Trong hộp đựng 500 chiếc thẻ cùng loại có 200 chiếc thẻ màu vàng. Trên mỗi chiếc thẻ màu vàng có ghi một trong năm số: 1,2,3,4,5. Có 40 chiếc thẻ màu vàng ghi số 5 . Chọn ra ngẫu nhiên một chiếc thẻ trong hộp đựng thẻ. Giả sử chiếc thẻ được chọn ra có màu vàng. Tính xác suất để chiếc thẻ đó ghi số 5 .
Trong hộp đựng 500 chiếc thẻ cùng loại có 200 chiếc thẻ màu vàng. Trên mỗi chiếc thẻ màu vàng có ghi một trong năm số: 1,2,3,4,5. Có 40 chiếc thẻ màu vàng ghi số 5 . Chọn ra ngẫu nhiên một chiếc thẻ trong hộp đựng thẻ. Giả sử chiếc thẻ được chọn ra có màu vàng. Tính xác suất để chiếc thẻ đó ghi số 5 .
Quảng cáo
Trả lời:
Xét hai biến cố sau:
A: "Chiếc thẻ được chọn ra ghi số 5 ";
B: "Chiếc thẻ được chọn ra có màu vàng".
Khi đó, xác suất để chiếc thẻ được chọn ra ghi số 5 , biết rằng chiếc thẻ đó có màu vàng, chính là xác suất có điều kiện \({\rm{P}}({\rm{A}}\mid {\rm{B}})\).
Ta có \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{n(A \cap B)}}{{n(B)}} = \frac{{40}}{{200}} = \frac{1}{5} = 0,2\).
Vậy xác suất để chiếc thẻ được chọn ra ghi số 5 , biết rằng chiếc thẻ đó có màu vàng, là 0,2 .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”;
B là biến cố: "Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm".
Ta cần tính \({\rm{P}}({\rm{B}}\mid {\rm{A}})\).
Ta có \(P(B\mid A) = \frac{{P(AB)}}{{P(A)}}\). Ở câu a) ta đã có \(P(AB) = \frac{2}{{36}}\). Cần tính \({\rm{P}}({\rm{A}})\).
Ta có \({\rm{A}} = \{ (1;6);(2;5);(3;4);(4;3);(5;2);(6;1)\} ;n(A) = 6 \Rightarrow P(A) = \frac{6}{{36}}\).
Từ đó suy ra \(P(B\mid A) = \frac{{P(AB)}}{{P(A)}} = \frac{2}{6} = \frac{1}{3}\)
Lời giải
\( \cdot \) Trong 1500 người đã bị nhiễm bệnh sốt xuất huyết, số người cho kết quả dương tính (khi kiểm tra) là: \(76\% \). \(1500 = 1140\) (người).
Trong 1500 người đã bị nhiễm bệnh sốt xuất huyết, số người cho kết quả âm tính (khi kiểm tra) là: \(1500 - 1140 = 360\) (người).
- Trong 7500 người không bị nhiễm bệnh sốt xuất huyết, số người cho kết quả dương tính (khi kiểm tra) là: \(7\% \). \(7500 = 525\) (người). Do đó, số người không bị nhiễm bệnh sốt xuất huyết cho kết quả âm tính (khi kiểm tra) là: \(7500 - 525 = 6975\) (người).
Từ đó, Bảng trên được hoàn thiện bởi Bảng dưới đây (đơn vị: người).

Từ Bảng vừa tìm được ta thấy số người có kết quả dương tính khi thử nghiệm là:
\(525 + 1140 = 1665 > 1500.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.