Bạn An phải thực hiện hai thí nghiệm liên tiếp. Thí nghiệm thứ nhất có xác suất thành cồng là 0,7 . Nếu thí nghiệm thứ nhất thành công thì xác suất thành công của thí nghiệm thứ hai là 0,9 . Nếu thí nghiệm thứ nhất không thành công thì xác suất thành công của thí nghiệm thứ hai chỉ là 0,4 . Tính xác suất để:
Thí nghiệm thứ nhất thành công và thí nghiệm thứ hai không thành công.
Bạn An phải thực hiện hai thí nghiệm liên tiếp. Thí nghiệm thứ nhất có xác suất thành cồng là 0,7 . Nếu thí nghiệm thứ nhất thành công thì xác suất thành công của thí nghiệm thứ hai là 0,9 . Nếu thí nghiệm thứ nhất không thành công thì xác suất thành công của thí nghiệm thứ hai chỉ là 0,4 . Tính xác suất để:
Thí nghiệm thứ nhất thành công và thí nghiệm thứ hai không thành công.
Quảng cáo
Trả lời:

Biến cố "Thí nghiệm thứ nhất thành công và thí nghiệm thứ hai không thành công" là \(P(A\bar B) = P(A) \cdot P(\bar B\mid A)\)
Theo công thức nhân xác suất ta có \(P(A\bar B) = P(A) \cdot P(\bar B\mid A)\).
Ta có \(P(\bar B\mid A)\) là xác suất đế thí nghiệm thứ hai không thành công nếu thí nghiệm thứ nhất thành công. Do đó từ dữ kiện của bài toán ta có
\(P(\bar B\mid A) = 1 - 0,9 = 0,1;\quad P(A) = 0,7.{\rm{ }}\)
Vậy \(P(\bar B\mid A) = 0,7 \cdot 0,1 = 0,07\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\( \cdot \) Trong 1500 người đã bị nhiễm bệnh sốt xuất huyết, số người cho kết quả dương tính (khi kiểm tra) là: \(76\% \). \(1500 = 1140\) (người).
Trong 1500 người đã bị nhiễm bệnh sốt xuất huyết, số người cho kết quả âm tính (khi kiểm tra) là: \(1500 - 1140 = 360\) (người).
- Trong 7500 người không bị nhiễm bệnh sốt xuất huyết, số người cho kết quả dương tính (khi kiểm tra) là: \(7\% \). \(7500 = 525\) (người). Do đó, số người không bị nhiễm bệnh sốt xuất huyết cho kết quả âm tính (khi kiểm tra) là: \(7500 - 525 = 6975\) (người).
Từ đó, Bảng trên được hoàn thiện bởi Bảng dưới đây (đơn vị: người).

Từ Bảng vừa tìm được ta thấy số người có kết quả dương tính khi thử nghiệm là:
\(525 + 1140 = 1665 > 1500.\)
Lời giải
Xét các biến cố sau:
\(A\) : "Người được chọn ra trong số những người thử nghiệm là bị nhiễm bệnh sốt xuất huyết";
\(B\) : "Người được chọn ra trong số những người thử nghiệm cho kết quả dương tính (khi kiểm tra)".
Từ các dữ liệu thống kê ở Bảng 2, ta có:
\({\rm{P}}(B) = \frac{{1665}}{{9000}} = \frac{{37}}{{200}};{\rm{P}}(A \cap B) = \frac{{1140}}{{9000}} = \frac{{19}}{{150}}.{\rm{ N\^e n P}}(A\mid B) = \frac{{19}}{{150}}:\frac{{37}}{{200}} = \frac{{76}}{{111}} \approx 68,5\% .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.