Câu hỏi:

19/08/2025 25 Lưu

Một phòng học môn Tin học có 40 máy tính được đánh số từ 1 đến 40 , các máy cùng loại và cùng màu, mỗi máy được đánh một số khác nhau. Trong phòng học đó, xác suất chọn được một máy tính đã cài đặt phần mềm lập trình Python được đánh số chẵn và được đánh số lẻ lần lượt là 0,375 và 0,45 . Bạn Nam chọn ngẫu nhiên một máy tính trong phòng học đó.

a) Tính xác suất bạn Nam chọn được máy tính đã cài đặt phần mềm lập trình Python, biết rằng máy tính đó được đánh số lẻ.

b) Tính xác suất bạn Nam chọn được máy tính đánh số chẵn, biết rằng máy tính đó đã cài đặt phần mềm lập trình Python.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét hai biến cố:

A: "Bạn Nam chọn được máy tính đã cài đặt phần mềm lập trình Python";

B: "Bạn Nam chọn được máy tính được đánh số lẻ".

Khi đó, xác suất bạn Nam chọn được máy tính đã cài đặt phần mềm lập trình Python, biết rằng máy tính đó được đánh số lẻ, chính là xác suất có điều kiện \(P(A\mid B)\).

Vi có 40 máy tính được đánh số từ 1 đến 40 , mỗi máy đánh 1 số khác nhau nên có 20 máy được đánh số lẻ và 20 máy được đánh số chẳn. Ta có \({\rm{P}}({\rm{B}}) = \) \(\frac{{20}}{{40}} = 0,5\).

Theo bài ra ta có, xác suất chọn được một máy tính đã cài đặt phần mềm lập trình Python được đánh số lẻ là 0,45 , tức là \({\rm{P}}({\rm{A}} \cap {\rm{B}}) = 0,45\).

Khi đó, \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{P(A \cap B)}}{{P(B)}} = \frac{{0,45}}{{0,5}} = \frac{9}{{10}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1: Bằng định nghĩa

Nếu \(B\) xảy ra tức là Bình lấy được viên bi trắng. Khi đó, trong hộp còn lại 29 viên bi với 19 viên bi trắng và 10 viên bi đen. Vậy \(P(A\mid B) = \frac{{19}}{{29}}\).

Cách 2: Bằng công thức

Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó \(n(\Omega ) = 30 \cdot 29\).

Bình có 20 cách chọn một viên bi trắng, An có 29 cách chọn từ 29 viên bi còn lại.

Do đó \(n(B) = 20 \cdot 29\) và \(P(B) = \frac{{n(B)}}{{n(\Omega )}}\).

Bình có 20 cách chọn một viên bi trắng, An có 19 cách chọn một viên bi trắng trong 19 viên bi trắng còn lại.

Do đó \(n(AB) = 20 \cdot 19\) và \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}}\).

Vậy \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{n(AB)}}{{n(B)}} = \frac{{20 \cdot 19}}{{20 \cdot 29}} = \frac{{19}}{{29}}\).

Lời giải

Xét các biến cố:

A: "Lần thứ nhất lấy ra sản phẩm chất lượng thấp";

\(B\) : "Lần thứ hai lấy ra sản phẩm chất lượng thấp";

\(C\) : "Cả hai lần đều lấy ra sản phẩm chất lượng thấp".

Khi đó, xác suất để lần thứ hai lấy ra sản phầm chất lượng thấp, biết lần thứ nhất lấy ra sản phẩm chất lượng thấp, là xác suất có điều kiện \({\rm{P}}(B\mid A)\) và \({\rm{P}}(C) = {\rm{P}}(B \cap A)\).

Ta có: \({\rm{P}}(A) = \frac{8}{{25}};{\rm{P}}(B\mid A) = \frac{7}{{24}}\). Suy ra \({\rm{P}}(C) = {\rm{P}}(B \cap A) = {\rm{P}}(A) \cdot {\rm{P}}(B\mid A) = \frac{8}{{25}} \cdot \frac{7}{{24}} = \frac{7}{{75}}\).

Vậy xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp là \(\frac{7}{{75}}\).