Một hộp có 20 viên bi trắng và 10 viên bi đen, các viên bi có cùng kích thước và khó́i lượng. Bạn Bỉnh lấy ngẫu nhiên một viên bi trong hộp, không trả lại. Sau đơ bạn An lấy ngẫu nhiên một viên bi trong hộp đó.
Gọi \(A\) là biến cố: "An lấy được viên bi trắng"; \(B\) là biến cố: "Bình lấy được viên bi trắng".
Tính \(P(A\mid B)\) bằng định nghĩa và bằng công thức tính \(P(A\mid B)\) ở trên.
Một hộp có 20 viên bi trắng và 10 viên bi đen, các viên bi có cùng kích thước và khó́i lượng. Bạn Bỉnh lấy ngẫu nhiên một viên bi trong hộp, không trả lại. Sau đơ bạn An lấy ngẫu nhiên một viên bi trong hộp đó.
Gọi \(A\) là biến cố: "An lấy được viên bi trắng"; \(B\) là biến cố: "Bình lấy được viên bi trắng".
Tính \(P(A\mid B)\) bằng định nghĩa và bằng công thức tính \(P(A\mid B)\) ở trên.
Quảng cáo
Trả lời:
Cách 1: Bằng định nghĩa
Nếu \(B\) xảy ra tức là Bình lấy được viên bi trắng. Khi đó, trong hộp còn lại 29 viên bi với 19 viên bi trắng và 10 viên bi đen. Vậy \(P(A\mid B) = \frac{{19}}{{29}}\).
Cách 2: Bằng công thức
Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó \(n(\Omega ) = 30 \cdot 29\).
Bình có 20 cách chọn một viên bi trắng, An có 29 cách chọn từ 29 viên bi còn lại.
Do đó \(n(B) = 20 \cdot 29\) và \(P(B) = \frac{{n(B)}}{{n(\Omega )}}\).
Bình có 20 cách chọn một viên bi trắng, An có 19 cách chọn một viên bi trắng trong 19 viên bi trắng còn lại.
Do đó \(n(AB) = 20 \cdot 19\) và \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}}\).
Vậy \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{n(AB)}}{{n(B)}} = \frac{{20 \cdot 19}}{{20 \cdot 29}} = \frac{{19}}{{29}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Không gian mẫu \(\Omega \) là tập hợp gồm 577006 người lái xe xảy ra tai nạn giao thông \( \Rightarrow n(\Omega ) = 577006\).
Gọi \(A\) là biến cố: "Người lái xe đó tử vong khi xảy ra tai nạn giao thông";
\(B\) là biến cố: "Người lái xe đó không thắt dây an toàn khi xảy ra tai nạn giao thông".
Khi đó AB là biến cố: "Người lái xe đó tử vong và không thắt dây an toàn khi xảy ra tai nạn giao thông".
Ta cần tính \(P(A\mid B)\).
Ta có \(162527 + 1601 = 164128\) người không thắt dây an toàn \( \Rightarrow n(B) = 164128\).
Vậy \(P(B) = \frac{{n(B)}}{{n(\Omega )}} = \frac{{164128}}{{577006}}\).
Trong số những người không thắt dây an toàn, có 1601 người tử vong khi xảy ra tai nạn giao thông \( \Rightarrow n(AB) = 1601\). Vậy \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}} = \frac{{1601}}{{577006}}\).
Do đó \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{1601}}{{164128}} \approx 9,755 \cdot {10^{ - 3}} = 0,009755\).
Lời giải
Ta cần tính \(P(A\mid \bar B)\).
\(\bar B\) là biến cố: "Người lái xe đó có thắt dây an toàn khi xảy ra tai nạn giao thông".
\(A\bar B\) là biến cố: "Người lái xe đó tử vong và có thắt dây an toàn khi xảy ra tai nạn giao thông".
Ta có \(412368 + 510 = 412878\) người lái xe có thắt dây an toàn \( \Rightarrow n(\bar B) = 412878\).
Trong số những người có thắt dây an toàn, có 510 người tử vong khi xảy ra tai nạn giao thông \( \Rightarrow n(A\bar B) = 510\).
Tương tự như trên, ta có: \(P(A\mid \bar B) = \frac{{P(A\bar B)}}{{P(\bar B)}} = \frac{{n(A\bar B)}}{{n(\bar B)}} = \frac{{510}}{{412878.}} \approx 1,235 \cdot {10^{ - 3}} = 0,001235.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.