Câu hỏi:

19/08/2025 21 Lưu

Trong một khu phố có 100 nhà, tại đó có 60 nhà gắn biển số chẵn và 40 nhà gắn biển số lẻ. Bên cạnh đó, có 50 nhà gắn biển số chẳn và 20 nhà gắn biển số lẻ đều có ô tô. Chọn ngẫu nhiên một nhà trong khu phố đó.

a) Tính xác suất nhà được chọn có ô tô, biết rằng nhà đó gắn biển số chẵn.

b) Tính xác suất nhà được chọn gắn biển số lẻ, biết rằng nhà đó có ô tô.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét hai biến cố:

A: “Nhà được chọn có ô tô”;

B: "Nhà được chọn gắn biển số chẵn".

Khi đó, xác suất nhà được chọn có ô tô, biết rằng nhà đó gắn biển số chẵn, chính là xác suất có điều kiện \({\rm{P}}({\rm{A}}\mid {\rm{B}})\).

Theo bài ra, ta có: \(P(B) = \frac{{60}}{{100}} = 0,6;P(A \cap B) = \frac{{50}}{{100}} = 0,5\).

Khi đó, \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{P(A \cap B)}}{{P(B)}} = \frac{{0,5}}{{0,6}} = \frac{5}{6}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1: Bằng định nghĩa

Nếu \(B\) xảy ra tức là Bình lấy được viên bi trắng. Khi đó, trong hộp còn lại 29 viên bi với 19 viên bi trắng và 10 viên bi đen. Vậy \(P(A\mid B) = \frac{{19}}{{29}}\).

Cách 2: Bằng công thức

Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó \(n(\Omega ) = 30 \cdot 29\).

Bình có 20 cách chọn một viên bi trắng, An có 29 cách chọn từ 29 viên bi còn lại.

Do đó \(n(B) = 20 \cdot 29\) và \(P(B) = \frac{{n(B)}}{{n(\Omega )}}\).

Bình có 20 cách chọn một viên bi trắng, An có 19 cách chọn một viên bi trắng trong 19 viên bi trắng còn lại.

Do đó \(n(AB) = 20 \cdot 19\) và \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}}\).

Vậy \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{n(AB)}}{{n(B)}} = \frac{{20 \cdot 19}}{{20 \cdot 29}} = \frac{{19}}{{29}}\).

Lời giải

Gọi:

- A là biến cố "Chọn được học sinh thích kem";

- \(B\) là biến cố "Chọn được học sinh thích trà sữa".

Khi đó xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa chính là xác suất của \(A\) với điều kiện \(B\).

Vì có \(68\% \) số học sinh thích trà sữa trong nhóm khảo sát nên \(P(B) = 68\%  = 0,68\).

Ta có AB là biến cố "Chọn được học sinh thích cả trà sửa và kem".

Vì có \(24\% \) số học sinh thích cả trà sữa và kem nên \(P(AB) = 24\%  = 0,24\).

Vì thế ta có: \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{0,24}}{{0,68}} \approx 0,35\).

Vậy xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa là 0,35 .