Câu hỏi:

19/08/2025 69 Lưu

Một nhóm học sinh tham gia một kì thi Olympic Tin học của trường, trong đó có 5 học sinh lớp 12 A . Sau khi chấm điểm, có 3 học sinh lớp 12 A đạt giải. Chọn ngẫu nhiên 1 học sinh trong nhóm học sinh trên. Tính xác suất chọn được học sinh đạt giải, biết rằng học sinh đó thuộc lớp 12 A .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét các biến cố:

A: "Chọn được học sinh đạt giải";

B: "Chọn được học sinh thuộc lớp 12A".

Khi đó, xác suất chọn được học sinh đạt giải, biết rằng học sinh đó thuộc lớp 12 A , là xác suất của \(A\) với điều kiện \(B\).

Ta có: \(n(B) = 5,n(A \cap B) = 3\). Suy ra \({\rm{P}}(A\mid B) = \frac{{n(A \cap B)}}{{n(B)}} = \frac{3}{5}\).

Vậy xác suất chọn được học sinh đạt giải, biết rằng học sinh đó thuộc lớp 12 A , là \(\frac{3}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1: Bằng định nghĩa

Nếu \(B\) xảy ra tức là Bình lấy được viên bi trắng. Khi đó, trong hộp còn lại 29 viên bi với 19 viên bi trắng và 10 viên bi đen. Vậy \(P(A\mid B) = \frac{{19}}{{29}}\).

Cách 2: Bằng công thức

Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó \(n(\Omega ) = 30 \cdot 29\).

Bình có 20 cách chọn một viên bi trắng, An có 29 cách chọn từ 29 viên bi còn lại.

Do đó \(n(B) = 20 \cdot 29\) và \(P(B) = \frac{{n(B)}}{{n(\Omega )}}\).

Bình có 20 cách chọn một viên bi trắng, An có 19 cách chọn một viên bi trắng trong 19 viên bi trắng còn lại.

Do đó \(n(AB) = 20 \cdot 19\) và \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}}\).

Vậy \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{n(AB)}}{{n(B)}} = \frac{{20 \cdot 19}}{{20 \cdot 29}} = \frac{{19}}{{29}}\).

Lời giải

Gọi:

- A là biến cố "Chọn được học sinh thích kem";

- \(B\) là biến cố "Chọn được học sinh thích trà sữa".

Khi đó xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa chính là xác suất của \(A\) với điều kiện \(B\).

Vì có \(68\% \) số học sinh thích trà sữa trong nhóm khảo sát nên \(P(B) = 68\%  = 0,68\).

Ta có AB là biến cố "Chọn được học sinh thích cả trà sửa và kem".

Vì có \(24\% \) số học sinh thích cả trà sữa và kem nên \(P(AB) = 24\%  = 0,24\).

Vì thế ta có: \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{0,24}}{{0,68}} \approx 0,35\).

Vậy xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa là 0,35 .