Câu hỏi:

02/08/2025 1 Lưu

Một nhóm học sinh tham gia một kì thi Olympic Tin học của trường, trong đó có 5 học sinh lớp 12 A . Sau khi chấm điểm, có 3 học sinh lớp 12 A đạt giải. Chọn ngẫu nhiên 1 học sinh trong nhóm học sinh trên. Tính xác suất chọn được học sinh đạt giải, biết rằng học sinh đó thuộc lớp 12 A .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét các biến cố:

A: "Chọn được học sinh đạt giải";

B: "Chọn được học sinh thuộc lớp 12A".

Khi đó, xác suất chọn được học sinh đạt giải, biết rằng học sinh đó thuộc lớp 12 A , là xác suất của \(A\) với điều kiện \(B\).

Ta có: \(n(B) = 5,n(A \cap B) = 3\). Suy ra \({\rm{P}}(A\mid B) = \frac{{n(A \cap B)}}{{n(B)}} = \frac{3}{5}\).

Vậy xác suất chọn được học sinh đạt giải, biết rằng học sinh đó thuộc lớp 12 A , là \(\frac{3}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi:

- A là biến cố "Chọn được học sinh thích kem";

- \(B\) là biến cố "Chọn được học sinh thích trà sữa".

Khi đó xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa chính là xác suất của \(A\) với điều kiện \(B\).

Vì có \(68\% \) số học sinh thích trà sữa trong nhóm khảo sát nên \(P(B) = 68\%  = 0,68\).

Ta có AB là biến cố "Chọn được học sinh thích cả trà sửa và kem".

Vì có \(24\% \) số học sinh thích cả trà sữa và kem nên \(P(AB) = 24\%  = 0,24\).

Vì thế ta có: \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{0,24}}{{0,68}} \approx 0,35\).

Vậy xác suất để chọn được học sinh thích kem, biết rằng học sinh đó thích trà sữa là 0,35 .

Lời giải

Không gian mẫu \(\Omega \) là tập hợp gồm 577006 người lái xe xảy ra tai nạn giao thông \( \Rightarrow n(\Omega ) = 577006\).

Gọi \(A\) là biến cố: "Người lái xe đó tử vong khi xảy ra tai nạn giao thông";

\(B\) là biến cố: "Người lái xe đó không thắt dây an toàn khi xảy ra tai nạn giao thông".

Khi đó AB là biến cố: "Người lái xe đó tử vong và không thắt dây an toàn khi xảy ra tai nạn giao thông".

Ta cần tính \(P(A\mid B)\).

Ta có \(162527 + 1601 = 164128\) người không thắt dây an toàn \( \Rightarrow n(B) = 164128\).

Vậy \(P(B) = \frac{{n(B)}}{{n(\Omega )}} = \frac{{164128}}{{577006}}\).

Trong số những người không thắt dây an toàn, có 1601 người tử vong khi xảy ra tai nạn giao thông \( \Rightarrow n(AB) = 1601\). Vậy \(P(AB) = \frac{{n(AB)}}{{n(\Omega )}} = \frac{{1601}}{{577006}}\).

Do đó \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{1601}}{{164128}} \approx 9,755 \cdot {10^{ - 3}} = 0,009755\).