Phòng công nghệ của một công ty có 4 kĩ sư và 6 kĩ thuật viên. Chọn ra ngẫu nhiên đồng thời 3 người từ phòng. Tính xác suất để cả 3 người được chọn đều là kĩ sư biết rằng trong 3 người được chọn có ít nhất 2 kĩ sư.
Phòng công nghệ của một công ty có 4 kĩ sư và 6 kĩ thuật viên. Chọn ra ngẫu nhiên đồng thời 3 người từ phòng. Tính xác suất để cả 3 người được chọn đều là kĩ sư biết rằng trong 3 người được chọn có ít nhất 2 kĩ sư.
Quảng cáo
Trả lời:
Gọi A là biến cố "Cả 3 người được chọn đều là kĩ sư" và B là biến cố " 3 người được chọn có ít nhất 2 kĩ sư".
Cần tính \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{P(AB)}}{{P(B)}}\).
Số cách chọn 3 người từ phòng 10 người là \(C_{10}^3 = 120\) cách.
Số cách chọn 3 người trong có có ít nhất hai kĩ sư là \(C_4^2 \cdot C_6^1 + C_4^3 = 40\) cách. Suy ra \(P(B) = \frac{{40}}{{120}} = \frac{1}{3}\).
Số cách chọn 3 người đều là kĩ sư là \(C_4^3 = 4\) cách.
Do đó \(P(AB) = \frac{4}{{120}} = \frac{1}{{30}}\).
Vậy \(P(A\mid B) = \frac{1}{{30}}:\frac{1}{3} = \frac{1}{{10}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\( \cdot \) Trong 1500 người đã bị nhiễm bệnh sốt xuất huyết, số người cho kết quả dương tính (khi kiểm tra) là: \(76\% \). \(1500 = 1140\) (người).
Trong 1500 người đã bị nhiễm bệnh sốt xuất huyết, số người cho kết quả âm tính (khi kiểm tra) là: \(1500 - 1140 = 360\) (người).
- Trong 7500 người không bị nhiễm bệnh sốt xuất huyết, số người cho kết quả dương tính (khi kiểm tra) là: \(7\% \). \(7500 = 525\) (người). Do đó, số người không bị nhiễm bệnh sốt xuất huyết cho kết quả âm tính (khi kiểm tra) là: \(7500 - 525 = 6975\) (người).
Từ đó, Bảng trên được hoàn thiện bởi Bảng dưới đây (đơn vị: người).

Từ Bảng vừa tìm được ta thấy số người có kết quả dương tính khi thử nghiệm là:
\(525 + 1140 = 1665 > 1500.\)
Lời giải
Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”;
B là biến cố: "Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm".
Ta cần tính \({\rm{P}}({\rm{B}}\mid {\rm{A}})\).
Ta có \(P(B\mid A) = \frac{{P(AB)}}{{P(A)}}\). Ở câu a) ta đã có \(P(AB) = \frac{2}{{36}}\). Cần tính \({\rm{P}}({\rm{A}})\).
Ta có \({\rm{A}} = \{ (1;6);(2;5);(3;4);(4;3);(5;2);(6;1)\} ;n(A) = 6 \Rightarrow P(A) = \frac{6}{{36}}\).
Từ đó suy ra \(P(B\mid A) = \frac{{P(AB)}}{{P(A)}} = \frac{2}{6} = \frac{1}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.