Một trường đại học tiến hành khảo sát tình trạng việc làm sau khi tốt nghiệp của sinh viên. Kết quả khảo sát cho thấy tỉ lệ người tìm được việc làm đúng chuyên ngành là \(85\% \) đối với sinh viên tốt nghiệp loại giỏi và \(70\% \) đối với sinh viên tốt nghiệp loại khác.
Tỉ lệ sinh viên tốt nghiệp loại giỏi là \(30\% \). Gặp ngẫu nhiên một sinh viên đã tốt nghiệp của trường.
Sử dụng sơ đồ hình cây, tính xác suất của các biến cố:
C: "Sinh viên tốt nghiệp loại giỏi và tìm được việc làm đúng chuyên ngành";
\(D\) : "Sinh viên không tốt nghiệp loại giỏi và tìm được việc làm đúng chuyên ngành".
Một trường đại học tiến hành khảo sát tình trạng việc làm sau khi tốt nghiệp của sinh viên. Kết quả khảo sát cho thấy tỉ lệ người tìm được việc làm đúng chuyên ngành là \(85\% \) đối với sinh viên tốt nghiệp loại giỏi và \(70\% \) đối với sinh viên tốt nghiệp loại khác.
Tỉ lệ sinh viên tốt nghiệp loại giỏi là \(30\% \). Gặp ngẫu nhiên một sinh viên đã tốt nghiệp của trường.
Sử dụng sơ đồ hình cây, tính xác suất của các biến cố:
C: "Sinh viên tốt nghiệp loại giỏi và tìm được việc làm đúng chuyên ngành";
\(D\) : "Sinh viên không tốt nghiệp loại giỏi và tìm được việc làm đúng chuyên ngành".
Quảng cáo
Trả lời:

Gọi A là biến cố "Sinh viên đó tốt nghiệp loại giỏi",
B là biến cố "Sinh viên đó tìm được việc làm đúng chuyên ngành".
Ta có \({\rm{P}}({\rm{A}}) = 0,3;P(\bar A) = 1 - P(A) = 0,7;{\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,85;P(B\mid \bar A) = 0,7\).
Suy ra \(P(\bar B\mid A) = 1 - P(B\mid A) = 0,15;P(\bar B\mid \bar A) = 1 - P(B\mid \bar A) = 0,3\)
Ta có sơ đồ cây

Dựa vào sơ đồ cây, ta có: \(P(C) = 0,255;P(D) = 0,49\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố "Kiện hành lí có chứa hàng cấm" và \(B\) là biến cố "Máy phát chuông cảnh báo". Ta có
\(P(B\mid A) = 0,95;P(B\mid \bar A) = 0,02;P(A) = 0,001.\)
Do đó \(P(\bar A) = 1 - P(A) = 0,999;P(\bar B\mid A) = 1 - P(B\mid A) = 0,05;P(\bar B\mid \bar A) = 1 - P(B\mid \bar A) = 0,98\).
Ta có sơ đồ hình cây như sau:

Do \(M = AB\) nên \(P(M) = P(AB) = 0,00095\).
Do \(N = \bar AB\) nên \(P(N) = P(\bar AB) = 0,01998\).
Lời giải
Gọi A là biến cố "UPS bị hỏng khi xảy ra sự cố điện".
B là biến cố "Máy tính bị hỏng".
Ta có \({\rm{P}}({\rm{A}}) = 0,02;{\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,1;P(\bar B\mid \bar A) = 1\).
Suy ra \(P(\bar B\mid A) = 1 - P(B\mid A) = 0,9\).
Ta có sơ đồ cây như sau:
Dựa vào sơ đồ cây ta có:
\(P(AB) = 0,002\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.