Mỗi bạn học sinh trong lớp của Minh lựa chọn học một trong hai ngoại ngữ là tiếng Anh hoặc tiếng Nhật. Xác suất chọn tiếng Anh của mỗi bạn học sinh nữ là 0,6 và của mỗi bạn học sinh nam là 0,7 . Lớp của Minh có 25 bạn nữ và 20 bạn nam. Chọn ra ngẫu nhiên một bạn trong lớp.
Sử dụng sơ đồ hình cây, tính xác suất của các biến cố:
\(A\): "Bạn được chọn là nam và học tiếng Nhật";
\(B\) : "Bạn được chọn là nữ và học tiếng Anh".
Mỗi bạn học sinh trong lớp của Minh lựa chọn học một trong hai ngoại ngữ là tiếng Anh hoặc tiếng Nhật. Xác suất chọn tiếng Anh của mỗi bạn học sinh nữ là 0,6 và của mỗi bạn học sinh nam là 0,7 . Lớp của Minh có 25 bạn nữ và 20 bạn nam. Chọn ra ngẫu nhiên một bạn trong lớp.
Sử dụng sơ đồ hình cây, tính xác suất của các biến cố:
\(A\): "Bạn được chọn là nam và học tiếng Nhật";
\(B\) : "Bạn được chọn là nữ và học tiếng Anh".
Quảng cáo
Trả lời:
Gọi M là biến cố "Bạn được chọn là nữ";
N là biến cố "Bạn được chọn học tiếng Anh".
Ta có \(P(M) = \frac{{C_{\frac{1}{1}}^{C_{45}^1}}}{{C_{45}^1}}\frac{5}{9};P(N\mid M) = 0,6;P(N\mid \bar M) = 0,7\).
Suy ra \(P(\bar M) = 1 - P(M) = \frac{4}{9};P(\bar N\mid M) = 1 - P(N\mid M) = 0,4\); \(P(\bar N\mid \bar M) = 1 - P(N\mid \bar M) = 0,3\).
Ta có sơ đồ hình cây
Dựa vào sơ đồ hình cây, ta có: \(P(A) = \frac{2}{{15}};P(B) = \frac{1}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố "Kiện hành lí có chứa hàng cấm" và \(B\) là biến cố "Máy phát chuông cảnh báo". Ta có
\(P(B\mid A) = 0,95;P(B\mid \bar A) = 0,02;P(A) = 0,001.\)
Do đó \(P(\bar A) = 1 - P(A) = 0,999;P(\bar B\mid A) = 1 - P(B\mid A) = 0,05;P(\bar B\mid \bar A) = 1 - P(B\mid \bar A) = 0,98\).
Ta có sơ đồ hình cây như sau:

Do \(M = AB\) nên \(P(M) = P(AB) = 0,00095\).
Do \(N = \bar AB\) nên \(P(N) = P(\bar AB) = 0,01998\).
Lời giải
Gọi \(A\) là biến cố "Ngày thứ Bảy trời nắng" và \(B\) là biến cố "Ngày Chủ nhật trời mưa".
Ta có \(P(A) = 0,7;P(B\mid A) = 0,2;P(B\mid \bar A) = 0,3\).
Do đó \(P(\bar A) = 1 - P(A) = 0,3;P(\bar B\mid A) = 1 - P(B\mid A) = 0,8;P(\bar B\mid \bar A) = 1 - P(B\mid \bar A) = 0,7\).
Áp dụng công thức nhân xác suất, ta có xác suất trời nắng vào thứ Bảy và trời mưa vào Chủ nhật là
\(P(AB) = P(A)P(B\mid A) = 0,7 \cdot 0,2 = 0,14.\)
Tương tự, ta có
\(P(A\bar B) = P(A)P(\bar B\mid A) = 0,7 \cdot 0,8 = 0,56;\)
\(P(\bar AB) = P(\bar A)P(B\mid \bar A) = 0,3 \cdot 0,3 = 0,09;\)
\(P(\bar A\bar B) = P(\bar A)P(\bar B\mid \bar A) = 0,3 \cdot 0,7 = 0,21.\)
Ta có thể biểu diễn các kết quả trên theo sơ đồ hình cây như sau:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.