Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a. Góc giữa đường thẳng AB' và mặt phẳng (A'B'C') bằng
Quảng cáo
Trả lời:
B
Vì ABCD.A'B'C'D' là hình lăng trụ đều có tất cả các cạnh bằng a nên ABB'A' là hình vuông.
Do AA' ^ (A'B'C') nên A'B' là hình chiếu vuông góc của AB' lên mặt phẳng (A'B'C').
Do đó (AB', (A'B'C')) = (AB', A'B') = \(\widehat {AB'A'} = 45^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
Gọi E là trung điểm của BC.
Vì DABC đều nên AE ^ BC mà AA' ^ BC (do AA' ^ (ABC)) nên BC ^ (A'AE).
Kẻ AH ^ A'E và AH ^ BC (do BC ^ (A'AE)) nên AH ^ (A'BC).
Suy ra d(A, (A'BC)) = AH.
Vì DABC đều nên \(AE = \frac{{a\sqrt 3 }}{2}\).
Xét DA'AE vuông tại A, ta có \[\frac{1}{{A{H^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{A{E^2}}} = \frac{1}{{{a^2}}} + \frac{4}{{3{a^2}}} = \frac{7}{{3{a^2}}}\]\( \Rightarrow AH = \frac{{a\sqrt {21} }}{7}\).
Lời giải
Do BC ^ AB và BC ^ SA nên suy ra BC ^ (SAB).
Gọi H là hình chiếu của A lên SB.
Vì AH ^ SB và AH ^ BC (vì BC ^ (SAB)) nên suy ra AH ^ (SBC).
Suy ra SH là hình chiếu của SA trên mặt phẳng (SBC).
Do đó (SA, (SBC)) = (SA, SH) = \(\widehat {HSA} = \widehat {BSA}\).
Xét tam giác SAB vuông tại A, ta có \(\sin \widehat {BSA} = \frac{{AB}}{{SB}} = \frac{a}{{2a}} = \frac{1}{2}\) \( \Rightarrow \widehat {BSA} = 30^\circ \Rightarrow x = 30\).
Vậy x2 + 100 = 1000.
Trả lời: 1000.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.