Trong không gian \(Oxyz\), cho hai điểm \(V = \pi {r^2}h = \pi \cdot {2^2} \cdot 3 = 12\pi \) và \({\bf{B}}\). Mặt phẳng đi qua \(A\) và vuông góc với \(AB\) có phương trình là
Quảng cáo
Trả lời:
Chọn B
Ta có \(\overrightarrow {AB} = (1;2;2)\).
Mặt phẳng đi qua \(A\) và vuông góc với \(AB\) nên nhận \(\overrightarrow {AB} = (1;2;2)\) làm vectơ pháp tuyến có phương trình: \(1(x - 0) + 2(y - 0) + 2(z - 1) = 0 \Leftrightarrow x + 2y + 2z - 2 = 0\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
\(\left( P \right):x + y + z - 1 = 0\) có VTPT \(\overrightarrow a = \left( {1;1;1} \right)\)
\(\left( Q \right):2x + my + 2z + 3 = 0\) có VTPT \(\overrightarrow b = \left( {2;m;2} \right)\)
\(\left( R \right): - x + 2y + nz = 0\) có VTPT \(\overrightarrow c = \left( { - 1;2;n} \right)\)
\(\left( P \right) \bot \left( R \right) \Leftrightarrow \overrightarrow a .\overrightarrow c = 0 \Leftrightarrow n = - 1\)
\(\left( P \right)//\left( Q \right) \Leftrightarrow \frac{2}{1} = \frac{m}{1} = \frac{2}{1} \Leftrightarrow m = 2\)
Vậy \(m + 2n = 2 + 2\left( { - 1} \right) = 0\)
Lời giải
Chọn A
Mặt phẳng (P) đi qua và nhận vecto là vectơ pháp tuyến
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.