Trong không gian Oyz cho hai mặt phẳng (P):x-3y+2z-1=0, (Q):x-z+2=0 . Mặt phẳng () vuông góc với cả (P) và (Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3 Phương trình của mp () là
Quảng cáo
Trả lời:
Chọn A
(P) có vectơ pháp tuyến , (Q) có vectơ pháp tuyến .
Vì mặt phẳng () vuông góc với cả (P) và (Q) nên () có một vectơ pháp tuyến là
.
Vì mặt phẳng () cắt trục Ox tại điểm có hoành độ bằng 3 nên (0 đi qua điểm M(3;0;0).
Vậy () đi qua điểmM(3;0;0). và có vectơ pháp tuyến nên () có phương trình:
x+y+z-3=0
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
\(\left( P \right):x + y + z - 1 = 0\) có VTPT \(\overrightarrow a = \left( {1;1;1} \right)\)
\(\left( Q \right):2x + my + 2z + 3 = 0\) có VTPT \(\overrightarrow b = \left( {2;m;2} \right)\)
\(\left( R \right): - x + 2y + nz = 0\) có VTPT \(\overrightarrow c = \left( { - 1;2;n} \right)\)
\(\left( P \right) \bot \left( R \right) \Leftrightarrow \overrightarrow a .\overrightarrow c = 0 \Leftrightarrow n = - 1\)
\(\left( P \right)//\left( Q \right) \Leftrightarrow \frac{2}{1} = \frac{m}{1} = \frac{2}{1} \Leftrightarrow m = 2\)
Vậy \(m + 2n = 2 + 2\left( { - 1} \right) = 0\)
Lời giải
Chọn A
Mặt phẳng (P) đi qua và nhận vecto là vectơ pháp tuyến
.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.