Cho khối lăng trụ đều có diện tích đáy bằng \[2\,\,({{\rm{m}}^{\rm{2}}})\] và chiều cao bằng \[3\,\,{\rm{(m)}}\]. Thể tích khối lăng trụ đã cho bằng
A. \[\frac{{3\sqrt 3 }}{2}\,({{\rm{m}}^3})\].
B. \[2\,({{\rm{m}}^3})\].
C. \[\frac{{\sqrt 3 }}{2}({{\rm{m}}^3})\].
D. \[6\,({{\rm{m}}^3})\].
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Ta có: \[V = B \cdot h = 2 \cdot 3 = 6\,({{\rm{m}}^3})\]. Chọn D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Dựa vào đồ thị hàm số ta thấy giá trị cực tiểu của hàm số \(f\left( x \right)\) bằng \( - 1\).
b) Đúng. Ta có: \({\log _3}\left( {f\left( x \right) + 6} \right) = 2 \Leftrightarrow f\left( x \right) + 6 = 9 \Leftrightarrow f\left( x \right) = 3\) \(\left( * \right)\)
Số nghiệm của phương trình \(\left( * \right)\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) với đường thẳng \(y = 3\). Dựa vào đồ thị ta thấy phương trình \(\left( * \right)\) có 2 nghiệm.
c) Sai. Dựa vào đồ thị ta thấy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {1;2} \right)\) và nghịch biến trên khoảng \(\left( {2;3} \right)\).
d) Đúng. Ta có \(f'\left( x \right) = 3a{x^2} + 2bx + c\).
Theo giả thiết ta có: \(\left\{ \begin{array}{l}f'\left( 0 \right) = 0\\f'\left( 2 \right) = 0\\f\left( 0 \right) = - 1\\f\left( 2 \right) = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 0\\12a + 4b + c = 0\\d = - 1\\8a + 4b + 2c + d = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 3\\c = 0\\d = - 1\end{array} \right.\).
Tổng \(2025a + b + c + d = - 2025 + 3 + 0 - 1 = - 2023\).
Lời giải
Do \(I\) là trọng tâm tam giác \(GBC\) nên ta có: \(\overrightarrow {SI} = \frac{1}{3}\left( {\overrightarrow {SG} + \overrightarrow {SB} + \overrightarrow {SC} } \right)\,\,\,\,\,\,\,\left( 1 \right)\).
Do \(G\) là trọng tâm tam giác \(ABC\) nên ta có: \(\overrightarrow {SG} = \frac{1}{3}\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right)\,\,\,\,\,\left( 2 \right)\).
Thay \(\left( 2 \right)\) vào \(\left( 1 \right)\) ta có: \(\overrightarrow {SI} = \frac{1}{3}\left( {\frac{1}{3}\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right) + \overrightarrow {SB} + \overrightarrow {SC} } \right) = \frac{1}{9}\overrightarrow {SA} + \frac{4}{9}\overrightarrow {SB} + \frac{4}{9}\overrightarrow {SC} \).
Vậy \(\left\{ \begin{array}{l}x = \frac{1}{9}\\y = \frac{4}{9}\\z = \frac{4}{9}\end{array} \right. \Rightarrow 9\left( {x - y + z} \right) = 1\).
Đáp án: 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \( - 3\).
B. \(2\).
C. \(1\).
D. \(0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[y = 1 - 2x\].
B. \[y = 2x\].
C. \[y = 2x - 1\].
D. \[y = - 2x\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = \overrightarrow 0 \).
B. \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
C. \(\overrightarrow {SA} + \overrightarrow {SB} = \overrightarrow {SC} + \overrightarrow {SD} \).
D. \(\overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SA} + \overrightarrow {SD} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


