Câu hỏi:

10/08/2025 22 Lưu

Theo báo cáo của một cơ sở sản xuất nước tinh khiết, nếu mỗi ngày cơ sở này sản xuất \(x\,({{\rm{m}}^{\rm{3}}})\) nước tinh khiết thì phải trả chi phí các khoản sau: 3 triệu đồng chi phí cố định; \(0,15\) triệu đồng cho mỗi mét khối sản phẩm; \(0,0003{x^2}\) triệu đồng chi phí bảo dưỡng máy móc. Biết công suất tối đa mỗi ngày của cơ sở này là \(200\,\,{{\rm{m}}^{\rm{3}}}\). Gọi \(C\left( x \right)\) là chi phí sản xuất \(x\,({{\rm{m}}^{\rm{3}}})\) sản phẩm mỗi ngày và \(\overline c \left( x \right)\) là chi phí trung bình mỗi mét khối sản phẩm.

a) \(\overline c \left( x \right) = 0,0003x + 0,15 + \frac{3}{x}\).

b) \(C\left( x \right) = 0,0003{x^2} + 0,15x + 5\).

c) Chi phí sản xuất \(100\,\,{{\rm{m}}^{\rm{3}}}\) nước tinh khiết là 20 triệu đồng.

d) Chi phí trung bình mỗi mét khối sản phẩm thấp nhất khi sản lượng nước tinh khiết trong ngày là \(100\,\,{{\rm{m}}^{\rm{3}}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đúng. Để sản xuất \(x\,({{\rm{m}}^{\rm{3}}})\) nước tinh khiết thì phải trả chi phí các khoản sau: 3 triệu đồng chi phí cố định; \(0,15\) triệu đồng cho mỗi mét khối sản phẩm; \(0,0003{x^2}\) triệu đồng chi phí bảo dưỡng máy móc.

Suy ra để sản xuất \(1\,{\rm{(}}{{\rm{m}}^{\rm{3}}}{\rm{)}}\) nước tinh khiết thì cần \(\frac{3}{x}\) triệu đồng chi phí cố định; \(0,15\) triệu đồng cho mỗi mét khối sản phẩm; \(0,0003x\) triệu đồng chi phí bảo dưỡng máy móc.

\( \Rightarrow \overline c \left( x \right) = \frac{3}{x} + 0,15 + 0,0003x\) (triệu đồng).

b) Sai. Khi đó, ta suy ra \(C\left( x \right) = \overline c \left( x \right) \cdot x\)\( = 3 + 0,15x + 0,0003{x^2}\).

c) Sai. Chi phí sản xuất \(100\,\,{{\rm{m}}^{\rm{3}}}\)\(C\left( {100} \right) = 3 + 0,15 \cdot 100 + 0,0003 \cdot {100^2}\)\( = 21\) (triệu đồng).

d) Đúng. Hàm chi phí trung bình mỗi mét khối sản phẩm là \(\overline c \left( x \right) = \frac{3}{x} + 0,15 + 0,0003x\), \(0 < x \le 200\).

Đặt \(f\left( x \right) = \overline c \left( x \right) = \frac{3}{x} + 0,15 + 0,0003x\), \(0 < x \le 200\).

\(f'\left( x \right) = - \frac{3}{{{x^2}}} + 0,0003\).

\(f'\left( x \right) = 0\)\( \Rightarrow - 3 + 0,0003{x^2} = 0\)\( \Rightarrow x = 100\).

Bảng biến thiên của hàm \(f\left( x \right)\).

Theo báo cáo của một cơ sở sản xuất nước tinh khiết, nếu mỗi ngày cơ sở này sản xuất (ảnh 1)

Dựa vào BBT thì chi phí trung bình mỗi mét khối sản phẩm thấp nhất khi sản lượng nước tinh khiết trong ngày là \(100\,\,{{\rm{m}}^{\rm{3}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

Lời giải

Dựa vào bảng biến thiên, ta thấy hàm số nghịch biến trên khoảng \[\left( {1;3} \right)\]. Chọn D.