Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng. Trên cạnh \(AC\) lấy điểm \(M\) và trên cạnh \(BF\) lấy điểm \(N\) sao cho \(\frac{{AM}}{{AC}} = \frac{{BN}}{{BF}} = k{\rm{. }}\)Tìm \(k\) để \(MN\,{\rm{//}}\,DE\).
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 11 có đáp án !!
Quảng cáo
Trả lời:
Ta có \(MN\,{\rm{//}}\,DE\) nên bốn điểm \(M,N,D,E\) đồng phẳng.
Trong mặt phẳng \(\left( {MNED} \right)\), gọi \(I = DM \cap NE \Rightarrow I \in AB,AB = \left( {ABCD} \right) \cap \left( {ABEF} \right)\).
Khi đó: \(\frac{{IM}}{{DM}} = \frac{{IN}}{{NE}}\).
Theo giả thiết, ta có: \(\frac{{AM}}{{AC}} = k\,\,(1) \Rightarrow \frac{{AC - MC}}{{AC}} = k \Rightarrow 1 - \frac{{MC}}{{AC}} = k \Rightarrow \frac{{MC}}{{AC}} = 1 - k\,\,(2).\)
Từ (1) và (2) suy ra \(\frac{{AM}}{{MC}} = \frac{k}{{1 - k}}\); tương tự ta chứng minh được \(\frac{{BN}}{{FN}} = \frac{k}{{1 - k}}\).
Vì \(AB\,{\rm{//}}\,CD\) nên \(\frac{{IM}}{{DM}} = \frac{{IA}}{{DC}} = \frac{{AM}}{{MC}} = \frac{k}{{1 - k}}\);
Vì \(AB\,{\rm{//}}\,EF\) nên \(\frac{{IN}}{{NE}} = \frac{{BI}}{{EF}} = \frac{{BN}}{{NF}} = \frac{k}{{1 - k}}\).
Mặt khác \(\frac{{AI}}{{DC}} + \frac{{BI}}{{EF}} = \frac{{AI}}{{FE}} + \frac{{BI}}{{EF}} = 1 \Rightarrow 2 \cdot \frac{k}{{1 - k}} = 1\)\( \Rightarrow 2k = 1 - k \Rightarrow k = \frac{1}{3}{\rm{. }}\)
Vậy với \(k = \frac{1}{3}\) thì \(MN\,{\rm{//}}\,DE\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Ta có \(\frac{1}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha = 1 + 18 = 19\)\( \Rightarrow {\sin ^2}\alpha = \frac{1}{{19}}\)\( \Rightarrow \sin \alpha = \pm \frac{1}{{\sqrt {19} }}\).
Vì \[\frac{\pi }{2} < \alpha < \pi \]\[ \Rightarrow \sin \alpha > 0\]\[ \Rightarrow \sin \alpha = \frac{1}{{\sqrt {19} }}\].</>
Suy ra \[\tan \frac{\alpha }{2} + \cot \frac{\alpha }{2} = \frac{{{{\sin }^2}\frac{\alpha }{2} + {{\cos }^2}\frac{\alpha }{2}}}{{\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}} = \frac{2}{{\sin \alpha }} = 2\sqrt {19} \approx 8,72\].
Đáp án: \[8,72\].
Lời giải
Đáp án
Vì quỹ đạo của quả bóng là một cung parabol nên phương trình có dạng \(h = f\left( t \right) = a{t^2} + bt + c,\,(a \ne 0)\).
Theo bài ra ta có \(f\left( 0 \right) = 0,5\,\,;\,f\left( 1 \right) = 12,5\,\,;\,\,f\left( 3 \right) = 18,5\).
Từ đây ta có hệ phương trình: \(\left\{ \begin{array}{l}c = 0,5\\a + b + c = 12,5\\9a + 3b + c = 18,5\end{array} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = - 3\\b = 15\end{array}\\{c = \frac{1}{2}}\end{array}} \right.\).
Suy ra phương trình parabol là \(h = - 3{t^2} + 15t + \frac{1}{2}\).
Parabol có hệ số \[a = - 3 < 0\], đỉnh \[I\left( {\frac{5}{2};\frac{{77}}{4}} \right)\].
Khi đó quả bóng đạt vị trí cao nhất là lúc \(t = \frac{5}{2} = 2,5\) giây.
Đáp án: 2,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.