Câu hỏi:

14/08/2025 26 Lưu

Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng. Trên cạnh \(AC\) lấy điểm \(M\) và trên cạnh \(BF\) lấy điểm \(N\) sao cho \(\frac{{AM}}{{AC}} = \frac{{BN}}{{BF}} = k{\rm{. }}\)Tìm \(k\) để \(MN\,{\rm{//}}\,DE\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng. Trên cạnh \(AC\) lấy điểm \(M\) và trên cạnh \(BF\) lấy điểm \(N\) sao cho \(\frac{{AM}}{{AC}} = \frac{{BN}}{{B (ảnh 1)

Ta có \(MN\,{\rm{//}}\,DE\) nên bốn điểm \(M,N,D,E\) đồng phẳng.

Trong mặt phẳng \(\left( {MNED} \right)\), gọi \(I = DM \cap NE \Rightarrow I \in AB,AB = \left( {ABCD} \right) \cap \left( {ABEF} \right)\).

Khi đó: \(\frac{{IM}}{{DM}} = \frac{{IN}}{{NE}}\).

Theo giả thiết, ta có: \(\frac{{AM}}{{AC}} = k\,\,(1) \Rightarrow \frac{{AC - MC}}{{AC}} = k \Rightarrow 1 - \frac{{MC}}{{AC}} = k \Rightarrow \frac{{MC}}{{AC}} = 1 - k\,\,(2).\)

Từ (1) và (2) suy ra \(\frac{{AM}}{{MC}} = \frac{k}{{1 - k}}\); tương tự ta chứng minh được \(\frac{{BN}}{{FN}} = \frac{k}{{1 - k}}\).

Vì \(AB\,{\rm{//}}\,CD\) nên \(\frac{{IM}}{{DM}} = \frac{{IA}}{{DC}} = \frac{{AM}}{{MC}} = \frac{k}{{1 - k}}\);

Vì \(AB\,{\rm{//}}\,EF\) nên \(\frac{{IN}}{{NE}} = \frac{{BI}}{{EF}} = \frac{{BN}}{{NF}} = \frac{k}{{1 - k}}\).

Mặt khác \(\frac{{AI}}{{DC}} + \frac{{BI}}{{EF}} = \frac{{AI}}{{FE}} + \frac{{BI}}{{EF}} = 1 \Rightarrow 2 \cdot \frac{k}{{1 - k}} = 1\)\( \Rightarrow 2k = 1 - k \Rightarrow k = \frac{1}{3}{\rm{. }}\)

Vậy với \(k = \frac{1}{3}\) thì \(MN\,{\rm{//}}\,DE\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án

Ta có \(\frac{1}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha = 1 + 18 = 19\)\( \Rightarrow {\sin ^2}\alpha = \frac{1}{{19}}\)\( \Rightarrow \sin \alpha = \pm \frac{1}{{\sqrt {19} }}\).

Vì \[\frac{\pi }{2} < \alpha < \pi \]\[ \Rightarrow \sin \alpha > 0\]\[ \Rightarrow \sin \alpha = \frac{1}{{\sqrt {19} }}\].</>

Suy ra \[\tan \frac{\alpha }{2} + \cot \frac{\alpha }{2} = \frac{{{{\sin }^2}\frac{\alpha }{2} + {{\cos }^2}\frac{\alpha }{2}}}{{\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}} = \frac{2}{{\sin \alpha }} = 2\sqrt {19} \approx 8,72\].

Đáp án: \[8,72\].

Lời giải

Đáp án

Vì quỹ đạo của quả bóng là một cung parabol nên phương trình có dạng \(h = f\left( t \right) = a{t^2} + bt + c,\,(a \ne 0)\).

Theo bài ra ta có \(f\left( 0 \right) = 0,5\,\,;\,f\left( 1 \right) = 12,5\,\,;\,\,f\left( 3 \right) = 18,5\).

Từ đây ta có hệ phương trình: \(\left\{ \begin{array}{l}c = 0,5\\a + b + c = 12,5\\9a + 3b + c = 18,5\end{array} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = - 3\\b = 15\end{array}\\{c = \frac{1}{2}}\end{array}} \right.\).

Suy ra phương trình parabol là \(h = - 3{t^2} + 15t + \frac{1}{2}\).

Parabol có hệ số \[a = - 3 < 0\], đỉnh \[I\left( {\frac{5}{2};\frac{{77}}{4}} \right)\].

Khi đó quả bóng đạt vị trí cao nhất là lúc \(t = \frac{5}{2} = 2,5\) giây.

Đáp án: 2,5.