Trong hộp có 20 nắp khoen bia Tiger, trong đó có 2 nắp ghi “Chúc mừng bạn đã trúng thưởng xe Camry”. Bạn Minh Hiền được chọn lên rút thăm lần lượt hai nắp khoen, xác suất để cả hai nắp đều trúng thưởng là:
Quảng cáo
Trả lời:

Chọn C
Gọi A là biến cố “nắp khoen đầu trúng thưởng”
Gọi B là biến cố “nắp khoen thứ hai trúng thưởng”.
Ta đi tính \[P\left( {A \cap B} \right)\]
Khi bạn rút thăm lần đầu thì trong hộp có 20 nắp trong đó có 2 nắp trúng do đó \[P\left( A \right) = \frac{2}{{20}} = \frac{1}{{10}}\]
Khi biến cố A đã xảy ra thì còn lại 19 nắp trong đó có 1 nắp trúng thưởng, do đó: \[P\left( {B|A} \right) = \frac{1}{{19}}\]
ta có \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} \Rightarrow P\left( {A \cap B} \right) = P\left( {B|A} \right).P\left( A \right) = \frac{1}{{19}}.\frac{1}{{10}} = \frac{1}{{190}}\]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Gọi \[A\] là biến cố “lần thứ nhất lấy được bi màu đỏ”.
Gọi\[B\]là biến cố “lần thứ hai lấy được bi màu xanh”.
Ta cần tìm \[P\left( {B|A} \right)\]
Không gian mẫu \[n\left( \Omega \right) = 16.15\] cách chọn
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi rong 15 bi còn lại có 15 cách chọn, do đó \[P\left( A \right) = \frac{{7.15}}{{16.15}} = \frac{7}{{16}}\]
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu xanh có 9 cách chọn, do đó \[P\left( {A \cap B} \right) = \frac{{7.9}}{{16.15}} = \frac{{21}}{{80}}\]
Vậy xác suất để viên bi lấy lần thứ hai là màu xanh nếu biết rằng viên bi lấy lần thứ nhất là màu đỏ là \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{{21}}{{80}}}}{{\frac{7}{{16}}}} = \frac{3}{5}\]
Lời giải
Chọn A
Gọi \[A\] là biến cố “viên bi lấy lần thứ nhất là màu đỏ”.
Gọi \[B\] là biến cố “viên bi lấy lần thứ hai là màu đỏ”.
Ta đi tính \[P\left( {B|A} \right)\] với \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}\]
Không gian mẫu \[n\left( \Omega \right) = 10.9\] cách chọn
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có cách 9 chọn, do đó \[P\left( A \right) = \frac{{7.9}}{{10.9}} = \frac{7}{{10}}\]
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ trong 6 viên bi còn lại có 6 cách chọn, do đó \[P\left( {A \cap B} \right) = \frac{{7.6}}{{10.9}} = \frac{7}{{15}}\]
Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{7}{{15}}}}{{\frac{7}{{10}}}} = \frac{2}{3}\]
Cách 2:
Sau khi biết viên bi lấy lần thứ nhất là màu đỏ. Khi đó trong hộp còn lại 9 viên: gồm 3 viên bi màu trắng và 6 viên bi màu đỏ. Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất cũng màu đỏ là \[P\left( {B|A} \right) = \frac{6}{9} = \frac{2}{3}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.