Một thư viện có hai phòng riêng biệt, phòng A và phòngB. Xác suất chọn được một quyển sách về chủ đề Khoa học tự nhiên thuộc phòng A và thuộc phòng B lần lượt là \(0,25\) và \(0,5\). Chọn ngẫu nhiên 1 quyển sách của thư viện. Giả sử quyển sách được chọn về chủ đề Khoa học tự nhiên, xác suất quyển sách đó ở phòng A là:
Quảng cáo
Trả lời:

Chọn D
Xét các biến cố:
M: “Quyển sách được chọn ở phòng A”
N: “Quyển sách được chọn về chủ đề Khoa học tự nhiên”
Q: “Quyển sách được chọn về chủ đề Khoa học tự nhiên và thuộc phòng A”
R: “Quyển sách được chọn về chủ đề Khoa học tự nhiên và thuộc phòng B”.
Nhận thấy \(N = Q \cup R\) và \(Q,R\) là hai biến cố xung khắc nên
\({\rm{P}}\left( N \right) = {\rm{P}}\left( Q \right) + {\rm{P}}\left( R \right) = 0,25 + 0,5 = 0,75\)
Ta có: \({\rm{P}}\left( {M|N} \right) = \frac{{{\rm{P}}\left( {M \cap N} \right)}}{{{\rm{P}}\left( N \right)}} = \frac{{0,25}}{{0,75}} = \frac{1}{3}\).
Vậy xác suất quyển sách được chọn ở phòng A, biết rằng quyển sách đó về chủ đề Khoa học tự nhiên, là \(\frac{1}{3}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Gọi \[A\] là biến cố “lần thứ nhất lấy được bi màu đỏ”.
Gọi\[B\]là biến cố “lần thứ hai lấy được bi màu xanh”.
Ta cần tìm \[P\left( {B|A} \right)\]
Không gian mẫu \[n\left( \Omega \right) = 16.15\] cách chọn
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi rong 15 bi còn lại có 15 cách chọn, do đó \[P\left( A \right) = \frac{{7.15}}{{16.15}} = \frac{7}{{16}}\]
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu xanh có 9 cách chọn, do đó \[P\left( {A \cap B} \right) = \frac{{7.9}}{{16.15}} = \frac{{21}}{{80}}\]
Vậy xác suất để viên bi lấy lần thứ hai là màu xanh nếu biết rằng viên bi lấy lần thứ nhất là màu đỏ là \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{{21}}{{80}}}}{{\frac{7}{{16}}}} = \frac{3}{5}\]
Lời giải
Chọn A
Gọi \[A\] là biến cố “viên bi lấy lần thứ nhất là màu đỏ”.
Gọi \[B\] là biến cố “viên bi lấy lần thứ hai là màu đỏ”.
Ta đi tính \[P\left( {B|A} \right)\] với \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}\]
Không gian mẫu \[n\left( \Omega \right) = 10.9\] cách chọn
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có cách 9 chọn, do đó \[P\left( A \right) = \frac{{7.9}}{{10.9}} = \frac{7}{{10}}\]
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ trong 6 viên bi còn lại có 6 cách chọn, do đó \[P\left( {A \cap B} \right) = \frac{{7.6}}{{10.9}} = \frac{7}{{15}}\]
Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{7}{{15}}}}{{\frac{7}{{10}}}} = \frac{2}{3}\]
Cách 2:
Sau khi biết viên bi lấy lần thứ nhất là màu đỏ. Khi đó trong hộp còn lại 9 viên: gồm 3 viên bi màu trắng và 6 viên bi màu đỏ. Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất cũng màu đỏ là \[P\left( {B|A} \right) = \frac{6}{9} = \frac{2}{3}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.