Câu hỏi:

21/08/2025 7,060 Lưu

Một mol khí lí tưởng biến đổi trạng thái theo chu trình ABC như Hình 2. Nhiệt độ của khí ở trạng thái A là \({{\rm{T}}_0} = 250{\rm{\;K}}\). Hai điểm B, C cùng nằm trên một đường đẳng nhiệt, đường thẳng AC đi qua gốc tọa độ O. Nhiệt độ cực đại mà khí đạt được khi biến đổi theo chu trình trên bằng bao nhiêu độ K?

Một mol khí lí tưởng biến đổi trạng thái theo chu trình ABC như Hình 2. Nhiệt độ của khí ở trạng thái A (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương pháp:

- Với \(\frac{{pV}}{T} = \) const \( \Rightarrow {T_{{\rm{max\;}}}}\) thì \({({\rm{pV}})_{{\rm{max\;}}}}\) nên trạng thái đó nằm trên đoạn BC.

- Theo đầu bài, \({T_B} = {T_C}\) thì \({T_{{\rm{max\;}}}}\) sẽ ở trung điểm của \(BC\).

- Áp dụng phương trình trạng thái khí tìm \({{\rm{T}}_{{\rm{max\;}}}}\)

Cách giải:

Với \(\frac{{pV}}{T} = \)const\( \Rightarrow {T_{{\rm{max}}}}\) thì \({({\rm{pV}})_{{\rm{max}}}}\) nên trạng thái đó nằm trên đoạn BC.

Theo Talet có:

\({p_c} = 3{p_0}\) và \({T_B} = {T_C} \Rightarrow {p_B}{V_B} = {p_C}{V_C}\)

\( \Rightarrow {p_B}.{V_0} = 3{p_0}.3{V_0} \Rightarrow {p_B} = 9{p_0}\)

Ta có: \({T_B} = {T_C}\) thì \({T_{{\rm{max\;}}}}\) sẽ ở trung điểm của \(BC\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{V = \frac{{{V_B} + {V_C}}}{2} = \frac{{{V_0} + 3{V_0}}}{2} = 2{V_0}}\\{p = \frac{{{p_B} + {p_C}}}{2} = \frac{{3{p_0} + 9{p_0}}}{2} = 6{p_0}}\end{array}} \right.\)

Phương trình trạng thái khí:

\(\frac{{pV}}{T} = \frac{{{p_0}{V_0}}}{{{T_0}}} \Rightarrow \frac{{6{p_0}2{V_0}}}{{{T_{{\rm{max}}}}}} = \frac{{{p_0}{V_0}}}{{250}}\)

\( \Rightarrow {T_{{\rm{max\;}}}} = 3000\left( {\rm{K}} \right)\)

Đáp án: 3000.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp:

+ Nhớ lại quy ước dấu và định luật I nhiệt động lực học: \({\rm{\Delta }}U = Q + A\).

+ Công của khối khí: \(A = p.{\rm{\Delta }}V\)

Cách giải:

+ Truyền nhiệt lượng cho Q cho khối khí nén \({\rm{Q}} > 0\)

\( \to \) b sai.

+ Độ lớn công của khối khí thực hiện là:

\(\left| A \right| = p{\rm{\Delta }}V = {3.10^5}{.7.10^{ - 3}} = 2100\left( J \right)\)

\( \to \) c đúng.

Áp dụng định luật I nhiệt động lực học:

\({\rm{\Delta }}U = Q + A \Rightarrow  - 1100 = Q - 2100 \Rightarrow Q = 1000\left( J \right)\)

\( \to \) a đúng.

+ Thể tích của khối khí tăng thêm 7,0 lít

\( \to \) d sai.

Lời giải

Phương pháp:

Áp dụng phương trình cân bằng nhiệt.

Cách giải:

Áp dụng phương trình cân bằng nhiệt:

\({m_1}{c_1}\left( {{t_1} - t} \right) = {m_2}{c_2}\left( {t - {t_2}} \right)\)

\( \Rightarrow \frac{{{m_1}{c_1}}}{{{m_2}{c_2}}} = \frac{{t - {t_2}}}{{{t_1} - t}} = \frac{{50 - 20}}{{150 - 50}} = \frac{3}{{10}}\)

Chọn D.

Câu 3

A. \(p = \frac{3}{2}\mu m\overline {{v^2}} \).   
B. \(p = \frac{1}{3}\mu m\overline {{v^2}} \).       
C. \(p = \mu m\overline {{v^2}} \).           
D. \(p = \frac{2}{3}\mu m\overline {{v^2}} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP