PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.Cho hàm số có đồ thị như hình vẽ dưới đây.
Hàm số đồng biến trên khoảng nào?
Quảng cáo
Trả lời:

Từ đồ thị hàm số ta thấy hàm số \(y = f\left( x \right)\) đồng biến khoảng \(\left( {0\,;\,2} \right)\). Vậy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {0;1} \right)\). Chọn D.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\overrightarrow P = m\overrightarrow g \) nên \(P = \left| {\overrightarrow P } \right| = m \cdot \left| {\overrightarrow g } \right| = 10\) (N).
Bóng đèn ở vị trí cân bằng nên \(\overrightarrow P + \overrightarrow {{T_1}} + \overrightarrow {{T_2}} = \overrightarrow 0 \) hay \(\overrightarrow P = - \overrightarrow {T'} \) với \(\overrightarrow {T'} = \overrightarrow {{T_1}} + \overrightarrow {{T_2}} \).
Suy ra \(T' = P = 10\,{\rm{N}}\). Vì \({T_1} = {T_2}\) và \(\left( {\overrightarrow {{T_1}} ,\,\overrightarrow {{T_2}} } \right) = 60^\circ \) nên
\(\frac{{T'}}{2} = {T_1} \cdot \cos 30^\circ \Rightarrow {T_1} = \frac{{10}}{{\sqrt 3 }} = \frac{{10\sqrt 3 }}{3}\) (N).
Vậy lực căng của mỗi nửa sợi dây là \(\frac{{10\sqrt 3 }}{3}\,{\rm{N}}\).
Lời giải
Thời gian nếu đi trực tiếp từ A đến B trên sa mạc là \(\frac{{70}}{{30}} = \frac{7}{3} > 2\).
Do đó, nhà địa chất học không thể đến đúng thời gian quy định.
Vì vậy cần thiết phải chia quãng đường đi được thành 3 giai đoạn: \(A \to C \to D \to B\).
Đặt \(HC = x\,\,\left( {0 < x < 70} \right);DK = y\,\,\left( {0 < y < 70} \right)\).
Thời gian đi từ \(A \to C\) là \(\frac{{\sqrt {{{10}^2} + {x^2}} }}{{30}}\).
Thời gian đi từ \(C \to D\) là \(\frac{{70 - \left( {x + y} \right)}}{{50}}\).
Thời gian đi từ \(D \to B\) là \(\frac{{\sqrt {{{10}^2} + {y^2}} }}{{30}}\).
Tổng thời gian đi từ \(A \to B\) theo cách này là:
\(\frac{{\sqrt {{{10}^2} + {x^2}} }}{{30}} + \frac{{70 - \left( {x + y} \right)}}{{50}} + \frac{{\sqrt {{{10}^2} + {y^2}} }}{{30}} = \frac{{\sqrt {{{10}^2} + {x^2}} }}{{30}} + \frac{{35 - x}}{{50}} + \frac{{\sqrt {{{10}^2} + {y^2}} }}{{30}} + \frac{{35 - y}}{{50}} = f\left( x \right) + f\left( y \right)\).
Xét \(f\left( u \right) = \frac{{\sqrt {{{10}^2} + {u^2}} }}{{30}} + \frac{{35 - u}}{{50}}\), \(0 < u < 70\).
Ta có \(f'\left( u \right) = \frac{u}{{30\sqrt {{{10}^2} + {u^2}} }} - \frac{1}{{50}};f'\left( u \right) = 0 \Rightarrow u = \frac{{15}}{2}\).
Lập bảng biến thiên ta được \(\mathop {\min }\limits_{u \in \left( {0;70} \right)} f\left( u \right) = f\left( {\frac{{15}}{2}} \right) = \frac{{29}}{{30}}\).
Khi đó \(f\left( x \right) + f\left( y \right) \ge \frac{{29}}{{30}} + \frac{{29}}{{30}} = \frac{{29}}{{15}} \approx 1,93\).
Dấu “=” xảy ra khi \(x = y = \frac{{15}}{2}\).
Vậy để đến B sớm nhất thì ông ta phải đi trên đoạn AC một khoảng 12,5 km, đoạn CD một khoảng 45 km và đi trên đoạn DB một khoảng 12,5 km.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.