Câu hỏi:

11/09/2025 101 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau.

Cho hàm số  có bảng biến thiên như hình vẽ sau. Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số bằng (ảnh 2)

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số bằng

A. \(3\).           
B. \(2\).           
C. \(0\).           
D. \(1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to {0^ \pm }} f\left( x \right) = + \infty \), suy ra \(x = 0\) là tiệm cận đứng của đồ thị hàm số.

Lại có \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - 2\), suy ra \(y = - 2\) là tiệm cận ngang của đồ thị hàm số. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\].   
B. \[y = \frac{{{x^2} + x + 1}}{{ - x + 1}}\].      
C. \[y = \frac{{{x^2} - x + 1}}{{ - x + 1}}\].  
D. \[y = \frac{{ - {x^2} - x - 1}}{{2x - 1}}\].

Lời giải

Đồ thị hàm số có tiệm cận đứng \(x = 1\) nên loại A, D.

Đồ thị hàm số có tiệm cận xiên \(y = - x\) nên loại B. Chọn C.

Lời giải

\(A\left( {0;5} \right) \in \left( C \right)\) nên \(b = - 5\). Suy ra \(f\left( x \right) = \frac{{ - {x^2} + ax - 5}}{{x - 1}}\).

Gọi \(A'\left( {{x_{A'}};{y_{A'}}} \right)\) là điểm đối xứng với \(A\left( {0;5} \right)\) qua điểm \(I\left( {1;1} \right)\), ta được: \(\left\{ \begin{array}{l}\frac{{{x_{A'}} + 0}}{2} = 1\\\frac{{{y_{A'}} + 5}}{2} = 1\end{array} \right.\).

Suy ra \(A'\left( {2; - 3} \right)\).

\(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng nên \(A'\left( {2; - 3} \right) \in \left( C \right)\). Suy ra \(\frac{{ - {2^2} + 2a - 5}}{{2 - 1}} = - 3 \Leftrightarrow a = 3\).

Vậy \(T = \frac{a}{b} = \frac{3}{{ - 5}} = - 0,6\).

 Đáp án: \( - 0,6\).

Câu 6

A. \[ - \frac{1}{2}\].               

B. \[\frac{1}{2}\].              
C. \[\frac{{\sqrt 3 }}{2}\].          
D. \[ - \frac{{\sqrt 3 }}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP