Câu hỏi:

11/09/2025 135 Lưu

C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 1 đến câu 4.

Cho hàm số \(y = \frac{{4x - 5}}{{x + 1}}\) có đồ thị \(\left( H \right)\). Gọi \(M\left( {{x_0};{y_0}} \right)\) với \({x_0} < 0\) là một điểm thuộc đồ thị \(\left( H \right)\) thỏa mãn tổng khoảng cách từ \(M\) đến hai đường tiệm cận của \(\left( H \right)\) đạt giá trị nhỏ nhất bằng \(6\). Tính giá trị của biểu thức \(S = {\left( {{x_0} + {y_0}} \right)^2}\) .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đồ thị \(\left( H \right)\) có tiệm cận đứng là đường thẳng \({\Delta _1}:x = - 1\) và tiệm cận ngang là đường thẳng \({\Delta _2}:y = 4\).

Gọi \(M\left( {{x_0};\frac{{4{x_0} - 5}}{{{x_0} + 1}}} \right) \in \left( H \right)\), \({x_0} \ne - 1,{x_0} < 0\).

Khi đó, ta có: \({d_1} = d\left( {M,{\Delta _1}} \right) = \left| {{x_0} + 1} \right|\)\({d_2} = d\left( {M,{\Delta _2}} \right) = \frac{9}{{\left| {{x_0} + 1} \right|}}.\)

\( \Rightarrow {d_1} \cdot {d_2} = \left| {{x_0} + 1} \right| \cdot \frac{9}{{\left| {{x_0} + 1} \right|}} = 9\).

Ta có: \({d_1} + {d_2} \ge 2\sqrt {{d_1}{d_2}} = 6\) nên \(\min \left( {{d_1} + {d_2}} \right) = 6\) khi \({d_1} = {d_2} \Leftrightarrow \left| {{x_0} + 1} \right| = \frac{9}{{\left| {{x_0} + 1} \right|}}\)\( \Leftrightarrow \left[ \begin{array}{l}{x_0} = 2\\{x_0} = - 4\end{array} \right.\).

Do \({x_0} < 0\) nên chọn \({x_0} = - 4\), khi đó \(M\left( { - 4;7} \right) \Rightarrow S = 9.\)

Đáp án: 9.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\,\,{\rm{(km/h)}}\) là vận tốc của tàu, \(x > 0\).

Thời gian tàu chạy quãng đường 1 km là: \(\frac{1}{x}\) (giờ).

Chi phí tiền nhiên liệu cho phần thứ nhất để tàu chạy 1 km là: \(\frac{1}{x} \cdot 480 = \frac{{480}}{x}\) (nghìn đồng).

Hàm chi phí cho phần thứ hai là \(p = k{x^2}\) (nghìn đồng/ giờ).

Khi \(x = 10,p = 10 \Rightarrow k = 0,1\) nên \(p = 0,1{x^2}\) (nghìn đồng/ giờ).

Do đó chi phí phần thứ hai để tàu chạy 1 km là: \(\frac{1}{x} \cdot 0,1{x^2} = 0,1x\) (nghìn đồng).

Vậy tổng chi phí nhiên liệu để tàu chạy 1 km đường sông: \(f\left( x \right) = \frac{{480}}{x} + 0,1x\) (nghìn đồng).

Thay \(x = v = 30\) (km/giờ) vào ta có \(f\left( {30} \right) = \frac{{480}}{{30}} + 0,1 \cdot 30 = 19\) (nghìn đồng).

Lời giải

\(A\left( {0;5} \right) \in \left( C \right)\) nên \(b = - 5\). Suy ra \(f\left( x \right) = \frac{{ - {x^2} + ax - 5}}{{x - 1}}\).

Gọi \(A'\left( {{x_{A'}};{y_{A'}}} \right)\) là điểm đối xứng với \(A\left( {0;5} \right)\) qua điểm \(I\left( {1;1} \right)\), ta được: \(\left\{ \begin{array}{l}\frac{{{x_{A'}} + 0}}{2} = 1\\\frac{{{y_{A'}} + 5}}{2} = 1\end{array} \right.\).

Suy ra \(A'\left( {2; - 3} \right)\).

\(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng nên \(A'\left( {2; - 3} \right) \in \left( C \right)\). Suy ra \(\frac{{ - {2^2} + 2a - 5}}{{2 - 1}} = - 3 \Leftrightarrow a = 3\).

Vậy \(T = \frac{a}{b} = \frac{3}{{ - 5}} = - 0,6\).

 Đáp án: \( - 0,6\).

Câu 3

A. \[y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\].   
B. \[y = \frac{{{x^2} + x + 1}}{{ - x + 1}}\].      
C. \[y = \frac{{{x^2} - x + 1}}{{ - x + 1}}\].  
D. \[y = \frac{{ - {x^2} - x - 1}}{{2x - 1}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP