Câu hỏi:

11/09/2025 367 Lưu

Một thùng rác thông minh cảm ứng tự động đóng mở dạng hình hộp chữ nhật có đáy là hình vuông và có thể tích là 2000m3 Thùng rác được làm bằng nhựa ABS có độ bền cao, chịu nhiệt, cách điện, chống nước. Để lượng vật liệu dùng để sản xuất thùng rác là nhỏ nhất thì chiều cao của chiếc hộp bằng bao nhiêu?

Một thùng rác thông minh cảm ứng tự động đóng mở dạng hình hộp chữ nhật có đáy là hình vuông và có thể tích là  Thùng rác được làm bằng nhựa ABS có độ bền cao, chịu nhiệt, cách điện, chống nư (ảnh 2)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\,\left( {{\rm{cm}}} \right)\) là cạnh đáy của chiếc thùng \(\,\left( {x > 0} \right)\).

Khi đó diện tích đáy thùng là \(x{\,^2}\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Vì thể tích thùng là \(2000\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\) nên chiều cao hộp là \(h = \frac{{2000}}{{{x^2}}}\,\,\left( {{\rm{cm}}} \right)\).

Tổng diện tích các bề mặt của chiếc thùng là: \(S = 2{x^2} + 4xh = \,\,2{x^2} + \frac{{8000}}{x}\,\,\,\left( {x > 0} \right)\).

Ta có \(S' = 4x - \frac{{8000}}{{{x^2}}}\,\, = \frac{{4{x^3} - 8000}}{{{x^2}}};\,\,\,S'\, = 0 \Leftrightarrow x = 10\sqrt[3]{2}\).

Bằng cách bảng biến thiên, dễ thấy diện tích bề mặt thùng nhỏ nhất khi cạnh đáy của thùng là \(10\sqrt[3]{2}\) và chiều cao của thùng là \(\frac{{20}}{{\sqrt[3]{4}}}\).

Vậy nguyên liệu để sản xuất chiếc thùng là ít nhất khi chiều cao thùng là \(\frac{{20}}{{\sqrt[3]{4}}}\,\,{\rm{cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo hình vẽ ta có các vectơ \[\overrightarrow {AS} ,\,\overrightarrow {BS} ,\,\overrightarrow {CS} ,\,\overrightarrow {DS} \] biểu thị các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \).

Khi đó, \(\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} = \overrightarrow {AS} + \,\overrightarrow {BS} + \,\overrightarrow {CS} + \,\overrightarrow {DS} \)

\( = - \left( {\overrightarrow {SA} + \,\overrightarrow {SB} + \,\overrightarrow {SC} + \,\overrightarrow {SD} } \right) = - \left[ {\left( {\overrightarrow {SA} + \,\overrightarrow {SC} } \right) + \,\left( {\overrightarrow {SB} + \,\overrightarrow {SD} } \right)} \right]\)

\( = - \left( {2\overrightarrow {SO} + 2\overrightarrow {SO} } \right) = - 4\overrightarrow {SO} \).

Vì các đoạn dây cáp có độ dài bằng nhau và góc tạo bởi hai đoạn dây cáp đối diện nhau là 60° nên tam giác \[SAC\] cân và \[\widehat {ASC} = 60^\circ \], do đó tam giác \[SAC\] đều, suy ra \[SO = SA \cdot \frac{{\sqrt 3 }}{2}\].

Khi đó, \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| = 4SO = 4 \cdot SA \cdot \frac{{\sqrt 3 }}{2} = 4 \cdot 5\,000 \cdot \frac{{\sqrt 3 }}{2} = 10\,000\sqrt 3 \,\,{\rm{(N)}}{\rm{.}}\)

Ta có \[\overrightarrow P = m \cdot \overrightarrow g \], suy ra \[P = m \cdot g = 10m\].

Để cần cẩu nâng được thùng hàng thì \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| \ge P\).

Suy ra \(10\,000\sqrt 3 \ge 10m \Rightarrow m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).

Vậy \(m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).

Lời giải

Điều kiện: \(2 - {x^2} \ge 0 \Leftrightarrow - \sqrt 2 \le x \le \sqrt 2 \).

Tập xác định của hàm số \(y = x + \sqrt {2 - {x^2}} \)\(D = \left[ { - \sqrt 2 ;\,\sqrt 2 } \right]\).

Ta có \(y' = 1 - \frac{x}{{\sqrt {2 - {x^2}} }}\).

\(y' = 0 \Leftrightarrow \sqrt {2 - {x^2}} = x \Rightarrow x = 1 \in \left( { - \sqrt 2 ;\,\sqrt 2 } \right)\).

\(y\left( { - \sqrt 2 } \right) = - \sqrt 2 \); \(y\left( {\sqrt 2 } \right) = \sqrt 2 \); \(y\left( 1 \right) = 2\).

Khi đó, \[M = \max y = y\left( 1 \right) = 2;\,\,m = \min y = y\left( { - \sqrt 2 } \right) = - \sqrt 2 \].

Vậy \(M - \sqrt 2 \cdot m = 2 - \sqrt 2 \cdot \,\left( { - \sqrt 2 } \right) = 4\).

Đáp án: 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP