Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). \(G\) là điểm thỏa mãn \(\overrightarrow {GS} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).

a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow {SO} \).
b) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).
c) \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \).
d) \(\overrightarrow {GS} = 3\overrightarrow {OG} \).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). \(G\) là điểm thỏa mãn \(\overrightarrow {GS} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).
a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow {SO} \).
b) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).
c) \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \).
d) \(\overrightarrow {GS} = 3\overrightarrow {OG} \).
Quảng cáo
Trả lời:

a) Sai. Ta có: \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow {AA} = \overrightarrow 0 \).
b) Đúng. Vì \(O\) là tâm hình bình hành \(ABCD\) nên \(O\) là trung điểm của \(AC\) và \(BD\).
Khi đó, \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 ;\,\,\overrightarrow {OB} + \overrightarrow {OD} = \overrightarrow 0 \), suy ra \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).
c) Đúng. Ta có \(\left\{ \begin{array}{l}\overrightarrow {SB} + \overrightarrow {SD} = 2\overrightarrow {SO} \\\overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SO} \end{array} \right.\), do đó \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \).
d) Sai. Ta có \(\overrightarrow {GS} + \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {GS} + \left( {\overrightarrow {GO} + \overrightarrow {OA} } \right) + \left( {\overrightarrow {GO} + \overrightarrow {OB} } \right) + \left( {\overrightarrow {GO} + \overrightarrow {OC} } \right) + \left( {\overrightarrow {GO} + \overrightarrow {OD} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {GS} + 4\overrightarrow {GO} + \left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {GS} + 4\overrightarrow {GO} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {GS} = 4\overrightarrow {OG} \).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi chiều rộng của đáy bể bơi là \(x,\,x > 0.\) Suy ra, chiều dài của đáy bể bơi là \(3x.\)
\(h\) là chiều cao của bể bơi \(\left( {h > 0} \right).\)
Theo giả thiết: \(V = 150 \Leftrightarrow h \cdot 3{x^2} = 150 \Leftrightarrow h = \frac{{150}}{{3{x^2}}} = \frac{{50}}{{{x^2}}}.\)
Diện tích các mặt bên và mặt đáy bể bơi là: \(S = 2hx + 6hx + 3{x^2} = 8hx + 3{x^2} = \frac{{400}}{x} + 3{x^2}\).
Ta có: \(S' = - \frac{{400}}{{{x^2}}} + 6x = \frac{{6{x^3} - 400}}{{{x^2}}}\); \(S' = 0 \Leftrightarrow x = \sqrt[3]{{\frac{{400}}{6}}} \approx 4,05\).
Lập BBT suy ra S đạt GTNN khi \(x = 4,05{\rm{ m}}{\rm{.}}\)
Vậy chiều rộng của đáy bể bơi là \(x = 4,05{\rm{ m}}\) để khi thi công tiết kiệm nguyên vật liệu nhất.
Đáp án: 4,05.
Lời giải
Gọi \({A_1},\,{B_1},\,{C_1}\) lần lượt là các điểm sao cho \(\overrightarrow {O{A_1}} = \overrightarrow {{F_1}} ,\,\,\overrightarrow {O{B_1}} = \overrightarrow {{F_2}} ,\,\overrightarrow {O{C_1}} = \overrightarrow {{F_3}} \). Lấy các điểm \({D_1},{A'_1},\,{B'_1},\,{D'_1}\) sao cho \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) là hình hộp như hình dưới đây.
Theo quy tắc hình hộp, ta có: \(\overrightarrow {O{A_1}} + \overrightarrow {O{B_1}} + \overrightarrow {O{C_1}} = \overrightarrow {O{{D'}_1}} \).
Mặt khác, do các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) đôi một vuông góc và \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 15\) (N) nên hình hộp \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) có ba cạnh \(O{A_1},\,O{B_1},\,O{C_1}\) đôi một vuông góc và bằng nhau.
Do đó, hình hộp \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) là hình lập phương có độ dài cạnh bằng 15.
Suy ra độ dài đường chéo của hình lập phương đó bằng \(15\sqrt 3 \).
Do chiếc đèn ở vị trí cân bằng nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow P \), ở đó \(\overrightarrow P \) là trọng lực tác dụng lên chiếc đèn.
Vậy trọng lượng của chiếc đèn là \(\left| {\overrightarrow P } \right| = \left| {\overrightarrow {O{{D'}_1}} } \right| = 15\sqrt 3 \) (N).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.