Câu hỏi:

11/09/2025 81 Lưu

Cho hình chóp tứ giác \(S.ABCD\).

A triangle with a point in the center

Description automatically generated

Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập hợp các đỉnh của hình chóp tứ giác, có bao nhiêu vectơ có giá nằm trong mặt phẳng \(\left( {SCD} \right)\)?

A. \(3\).           
B. \(2\).           
C. \(6\).           
D. \(0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Có 6 vectơ thỏa mãn là: \(\overrightarrow {SC} ;\,\,\overrightarrow {CS} ;\,\,\overrightarrow {SD} ;\,\,\overrightarrow {DS} ;\,\,\overrightarrow {CD} ;\,\,\overrightarrow {DC} \). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

A black background with white dots

AI-generated content may be incorrect.

a) Đúng. \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot BC \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = 5\), tương tự \(AD = 5\).

\(M\) là trung điểm \(CD\)\( \Rightarrow AM \bot MC\) (do \(\Delta ACD\) cân tại \(A\))\( \Rightarrow \overrightarrow {AM} \cdot \overrightarrow {MC} = 0\).

b) Sai. Ta có \(\left| {\overrightarrow {AD} + 2\overrightarrow {MC} } \right| = \left| {\overrightarrow {AD} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {AC} } \right| = AC = 5\).

c) Đúng. Ta có \(G\) là trọng tâm tam giác \(BCD\)\( \Rightarrow \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \) .

\(\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = \overrightarrow {AG} + \overrightarrow {GB} + \overrightarrow {AG} + \overrightarrow {GC} + \overrightarrow {AG} + \overrightarrow {GD} \)

\( = 3\overrightarrow {AG} + \left( {\overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} } \right) = 3\overrightarrow {AG} + \overrightarrow 0 = 3\overrightarrow {AG} \).

\( \Rightarrow \overrightarrow {AG} = \frac{1}{3}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\).

d) Sai. Từ đẳng thức \(\overrightarrow {AG} = \frac{1}{3}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\), ta suy ra\(AG < \frac{1}{3}\left( {\left| {\vec a} \right| + \left| {\vec b} \right| + \left| {\vec c} \right|} \right) = \frac{1}{3}\left( {4 + 5 + 5} \right) = \frac{{14}}{3}\).

Ngoài ra, ta có thể tính \(AG\) bằng định lý Pythagore.

Ta có \(BG = \frac{2}{3}BM = \frac{2}{3} \cdot \frac{{3\sqrt 3 }}{2} = \sqrt 3 \). Khi đó, \(AG = \sqrt {B{G^2} + A{B^2}} = \sqrt {19} < \frac{{14}}{3}\).

Lời giải

Gọi \[M\left( {{x_0};{y_0}} \right) \in \left( C \right) \Rightarrow M\left( {{x_0};\frac{{x_0^2 + 4{x_0} + 5}}{{{x_0} + 2}}} \right)\].

Gọi \[\left( d \right)\] là khoảng cách từ \[M\] đến đường thẳng \[3x + y + 6 = 0\].

Ta có \[d = \frac{1}{{\sqrt {10} }}\left| {\frac{{4x_0^2 + 16{x_0} + 17}}{{{x_0} + 2}}} \right| = \frac{1}{{\sqrt {10} }}\left| {4\left( {{x_0} + 2} \right) + \frac{1}{{{x_0} + 2}}} \right| \ge \frac{4}{{\sqrt {10} }}\].

Đẳng thức xảy ra \[ \Leftrightarrow 4\left| {{x_0} + 2} \right| = \frac{1}{{\left| {{x_0} + 2} \right|}} \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{{ - 3}}{2} \Rightarrow {y_0} = \frac{5}{2}\\{x_0} = \frac{{ - 5}}{2} \Rightarrow {y_0} = - \frac{5}{2}\end{array} \right.\].

Vậy có hai điểm thoả yêu cầu bài toán là \[{M_1}\left( {\frac{{ - 3}}{2};\frac{5}{2}} \right)\]\[{M_2}\left( {\frac{{ - 5}}{2};\frac{{ - 5}}{2}} \right)\].

Câu 3

A. \(\left( { - 2\,; - 3} \right).\)           
B. \(\left( {2\,; - 3} \right).\)   
C. \(\left( { - 2\,;3} \right).\)       
D. \(\left( {2\,\,;\,\,3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP