Để loại bỏ \(x\% \) chất gây ô nhiễm môi trường từ khí thải của một nhà máy, người ta ước tính chi phí (triệu đồng) cần bỏ ra được mô hình hoá bởi hàm số có dạng \(C\left( x \right) = \frac{{ax + b}}{{ - x + d}}\) (như hình vẽ), \(\left( {0 \le x < 100} \right).\) Tính chi phí chênh lệch (tỉ đồng) phải bỏ ra để loại bỏ \(90\% \) và loại bỏ \(99\% \) chất gây ô nhiễm từ khí thải của nhà máy.

Để loại bỏ \(x\% \) chất gây ô nhiễm môi trường từ khí thải của một nhà máy, người ta ước tính chi phí (triệu đồng) cần bỏ ra được mô hình hoá bởi hàm số có dạng \(C\left( x \right) = \frac{{ax + b}}{{ - x + d}}\) (như hình vẽ), \(\left( {0 \le x < 100} \right).\) Tính chi phí chênh lệch (tỉ đồng) phải bỏ ra để loại bỏ \(90\% \) và loại bỏ \(99\% \) chất gây ô nhiễm từ khí thải của nhà máy.
Quảng cáo
Trả lời:

Ta có \(C\left( x \right) = \frac{{ax + b}}{{ - x + d}} \cdot \) Từ đồ thị suy ra \(b = 0\,;d = 100\,;\,a = 200 \Rightarrow C\left( x \right) = \frac{{200x}}{{100 - x}} \cdot \)
Chi phí chênh lệch là \(\Delta C = \left| {C\left( {99} \right) - C\left( {90} \right)} \right| = \left| {\frac{{200 \cdot 99}}{{100 - 99}} - \frac{{200 \cdot 90}}{{100 - 90}}} \right| = 18\,000\) (triệu đồng) \( = 18\) (tỉ đồng).
Đáp án: 18.Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[M\left( {{x_0};{y_0}} \right) \in \left( C \right) \Rightarrow M\left( {{x_0};\frac{{x_0^2 + 4{x_0} + 5}}{{{x_0} + 2}}} \right)\].
Gọi \[\left( d \right)\] là khoảng cách từ \[M\] đến đường thẳng \[3x + y + 6 = 0\].
Ta có \[d = \frac{1}{{\sqrt {10} }}\left| {\frac{{4x_0^2 + 16{x_0} + 17}}{{{x_0} + 2}}} \right| = \frac{1}{{\sqrt {10} }}\left| {4\left( {{x_0} + 2} \right) + \frac{1}{{{x_0} + 2}}} \right| \ge \frac{4}{{\sqrt {10} }}\].
Đẳng thức xảy ra \[ \Leftrightarrow 4\left| {{x_0} + 2} \right| = \frac{1}{{\left| {{x_0} + 2} \right|}} \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{{ - 3}}{2} \Rightarrow {y_0} = \frac{5}{2}\\{x_0} = \frac{{ - 5}}{2} \Rightarrow {y_0} = - \frac{5}{2}\end{array} \right.\].
Vậy có hai điểm thoả yêu cầu bài toán là \[{M_1}\left( {\frac{{ - 3}}{2};\frac{5}{2}} \right)\] và \[{M_2}\left( {\frac{{ - 5}}{2};\frac{{ - 5}}{2}} \right)\].
Câu 2
Lời giải
Đồ thị hàm số \(y = x - 1 + \frac{4}{{x + 2}}\) có đường tiệm cận đứng \(x = - 2\), đường tiệm cận xiên \(y = x - 1\), do đó tâm đối xứng của đồ thị hàm số này có tọa độ là \(\left( { - 2\,; - 3} \right).\) Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.