PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\), có đồ thị như hình vẽ. Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?

PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\), có đồ thị như hình vẽ. Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?

Quảng cáo
Trả lời:
Từ đồ thị ta thấy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {3; + \infty } \right)\). Chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Quan sát hình vẽ, ta thấy:
Hàm số đã cho có tập xác định là \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).
Trên các khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( { - 1;\, + \infty } \right)\), đồ thị hàm số đi lên từ trái qua phải nên hàm số đã cho đồng biến trên mỗi khoảng này.
Trên các khoảng \(\left( { - 3; - 2} \right)\) và \(\left( { - 2;\, - 1} \right)\), đồ thị hàm số đi xuống từ trái qua phải nên hàm số đã cho nghịch biến trên mỗi khoảng này.
b) Đúng. Hàm số đã cho đạt cực đại tại \(x = - 3\); đạt cực tiểu tại \(x = - 1\).
c) Sai. Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x = - 2\).
d) Đúng. Vì \(x = - 2\) là tiệm cận đứng nên \(n = 2\). Khi đó, \(y = f\left( x \right) = \frac{{a{x^2} + bx + c}}{{x + 2}}\).
Ta có \(y' = \frac{{a{x^2} + 4ax + 2b - c}}{{{{\left( {x + 2} \right)}^2}}}\); \(y' = 0 \Leftrightarrow a{x^2} + 4ax + 2b - c = 0\) (*).
\(x = - 1\) là một nghiệm của phương trình (*), do đó \( - 3a + 2b - c = 0\).
Các điểm \(\left( { - 1;1} \right)\), \(\left( { - 3; - 3} \right)\) thuộc đồ thị hàm số đã cho nên tọa độ các điểm này thỏa mãn hàm số \(y = f\left( x \right) = \frac{{a{x^2} + bx + c}}{{x + 2}}\).
Khi đó, ta có hệ phương trình sau: \(\left\{ \begin{array}{l} - 3a + 2b - c = 0\\a - b + c = 1\\ - 9a + 3b - c = - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 3\\c = 3\end{array} \right.\).
Vậy công thức xác định hàm số đã cho là \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).
Câu 2
Lời giải
Từ bảng biến thiên, ta thấy \[M = \mathop {\max }\limits_{\left[ { - 1;\,3} \right]} f\left( x \right) = f\left( 0 \right) = 5\]. Chọn D.
Câu 3
A. \(y = 1\).
B. \(y = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




