Thời gian chờ khám bệnh của các bệnh nhân tại phòng khám X được cho trong bảng sau:
Thời gian (phút)
\(\left[ {0;5} \right)\)
\(\left[ {5;10} \right)\)
\(\left[ {10;15} \right)\)
\(\left[ {15;20} \right)\)
Số bệnh nhân
\(3\)
\(12\)
\(15\)
\(8\)
a) Khoảng biến biến thiên của mẫu số liệu là \(15\).
b) Số trung bình của mẫu là \(10,18\).
c) Phương sai của mẫu số liệu là \(19,42\).
d) Từ một mẫu số liệu về thời gian chờ khám bệnh của các bệnh nhân tại phòng khám Y, người ta tính được khoảng tứ phân vị bằng \(9,23\). Như vậy, thời gian chờ của bệnh nhân tại phòng khám Y phân tán hơn thời gian chờ của bệnh nhân tại phòng khám X. (làm tròn kết quả đến hàng phần trăm).
Thời gian chờ khám bệnh của các bệnh nhân tại phòng khám X được cho trong bảng sau:
|
Thời gian (phút) |
\(\left[ {0;5} \right)\) |
\(\left[ {5;10} \right)\) |
\(\left[ {10;15} \right)\) |
\(\left[ {15;20} \right)\) |
|
Số bệnh nhân |
\(3\) |
\(12\) |
\(15\) |
\(8\) |
a) Khoảng biến biến thiên của mẫu số liệu là \(15\).
b) Số trung bình của mẫu là \(10,18\).
c) Phương sai của mẫu số liệu là \(19,42\).
d) Từ một mẫu số liệu về thời gian chờ khám bệnh của các bệnh nhân tại phòng khám Y, người ta tính được khoảng tứ phân vị bằng \(9,23\). Như vậy, thời gian chờ của bệnh nhân tại phòng khám Y phân tán hơn thời gian chờ của bệnh nhân tại phòng khám X. (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:
Ta có bảng thống kê thời gian chờ khám bệnh của các bệnh nhân tại phòng khám X
|
Thời gian (phút) |
\(\left[ {0;5} \right)\) |
\(\left[ {5;10} \right)\) |
\(\left[ {10;15} \right)\) |
\(\left[ {15;20} \right)\) |
|
Giá trị đại diện |
\(2,5\) |
\(7,5\) |
\(12,5\) |
\(17,5\) |
|
Số bệnh nhân |
\(3\) |
\(12\) |
\(15\) |
\(8\) |
a) Khoảng biến thiên là \(20 - 0 = 20\).
b) Số trung bình của mẫu là \(\bar x = \frac{{2,5.3 + 7,5.12 + 12,5.15 + 17,5.8}}{{3 + 12 + 15 + 8}} \approx 11,18\).
c) Phương sai \({S^2} = \frac{1}{{38}}\left( {{{3.2,5}^2} + {{12.7,5}^2} + {{15.12,5}^2} + {{8.17,5}^2}} \right) - {\left( {11,18} \right)^2} \approx 19,42\).
d) Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{10}} \in \left[ {5;10} \right)\). Do đó tứ phân vị thứ nhất là
\({Q_1} = 5 + \frac{{\frac{{38}}{4} - 3}}{{12}}.\left( {10 - 5} \right) \approx 7,71\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{29}} \in \left[ {10;15} \right)\). Do đó tứ phân vị thứ ba là
\({Q_3} = 10 + \frac{{3.\frac{{38}}{4} - \left( {3 + 12} \right)}}{{15}}.\left( {15 - 10} \right) = 14,5\)
Vậy khoảng tứ phân vị là \({\Delta _{Q(X)}} = {Q_3} - {Q_1} \approx 14,5 - 7,71 \approx 6,79\)
Do \({\Delta _{Q(X)}} \approx 6,79 < {\Delta _{Q(Y)}} = 9,23\) nên thời gian chờ của bệnh nhân tại phòng khám Y phân tán hơn thời gian chờ của bệnh nhân tại phòng khám X.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số lượng khách du lịch đến tỉnh Quảng Ninh được cho dưới bảng sau

Cỡ mẫu n = 3 + 9 + 3 + 2 = 17.
Gọi x1; x2; …; x17 là số khách đến Quảng Ninh du lịch được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{x_4} + {x_5}}}{2}\) Î [5; 9) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 5 + \frac{{\frac{{17}}{4} - 3}}{9}.4 = \frac{{50}}{9}\).
Ta có \({Q_3} = \frac{{{x_{13}} + {x_{14}}}}{2}\) Î [9; 13) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 9 + \frac{{\frac{{3.17}}{4} - 12}}{3}.4 = 10\).
Khoảng tứ phân vị là DQ = 10 – \(\frac{{50}}{9}\) ≈ 4,44.
Trả lời: 4,44.
Lời giải
a) Khoảng biến thiên của tuổi thọ bóng đèn phân xưởng A là \(R = 39 - 24 = 15\).
b) Đối với mẫu số liệu phân xưởng A:
Cỡ mẫu n = 4 + 8 + 10 + 6 + 2 = 30.
Gọi \({x_1}\), \({x_1}\), \( \ldots \), \({x_{30}}\) là tuổi thọ bóng đèn phân xưởng A được sắp xếp theo thứ tự không giảm.
Khi đó tứ phân vị thứ nhất của mẫu số liệu \({x_8} \in [27;30)\), tứ phân vị thứ \(3\) của mẫu số liệu \({x_{23}} \in [33;36)\). Do đó
\({Q_1} = 27 + \frac{{7,5 - 4}}{8} \cdot 3 = 28,3125,\)
\({Q_3} = 33 + \frac{{22,5 - 22}}{6} \cdot 3 = 33,25.\)
Do đó \(\Delta Q = {Q_3} - {Q_1} = 33,25 - 28,3125 = 4,9375\).
Đối với mẫu số liệu phân xưởng B:
Cỡ mẫu n = 5 + 7 + 9 + 7 + 2 = 30.
Gọi \({x_1}\), \({x_1}\), \( \ldots \), \({x_{30}}\) là tuổi thọ bóng đèn phân xưởng B được sắp xếp theo thứ tự không giảm.
Khi đó tứ phân vị thứ nhất của mẫu số liệu \({x_8} \in [27;30)\), tứ phân vị thứ \(3\) của mẫu số liệu \({x_{23}} \in [33;36)\). Do đó
\({Q_1} = 27 + \frac{{7,5 - 5}}{7} \cdot 3 = \frac{{393}}{{14}},\) \({Q_3} = 33 + \frac{{22,5 - 21}}{7} \cdot 3 = \frac{{471}}{{14}}.\)
Do đó \(\Delta Q = {Q_3} - {Q_1} = \frac{{471}}{{14}} - \frac{{393}}{{14}} = \frac{{39}}{7}\).
c)
|
Giá trị đại diện |
\(25,5\) |
\(28,5\) |
\(31,5\) |
\(34,5\) |
\(37,5\) |
|
|
Số bóng đèn của phân xưởng A |
\(4\) |
\(8\) |
\(10\) |
\(6\) |
\(2\) |
\({n_A} = 30\) |
|
Số bóng đèn của phân xưởng B |
\(5\) |
\(7\) |
\(9\) |
\(7\) |
\(2\) |
\({n_B} = 30\) |
Số trung bình của phân xưởng A là \({\bar x_A} = \frac{{25,5 \cdot 4 + 28,5 \cdot 8 + 31,5 \cdot 10 + 34,5 \cdot 6 + 37,5 \cdot 2}}{{30}} = 30,9.\)
Số trung bình của phân xưởng B là \({\bar x_B} = \frac{{25,5 \cdot 5 + 28,5 \cdot 7 + 31,5 \cdot 9 + 34,5 \cdot 7 + 37,5 \cdot 2}}{{5 + 7 + 9 + 7 + 2}} = 30,9.\)
d) Phương sai của mẫu số liệu phân xưởng A là
\(s_A^2 = \frac{1}{{30}}\left( {{{25,5}^2} \cdot 4 + {{28,5}^2} \cdot 8 + {{31,5}^2} \cdot 10 + {{34,5}^2} \cdot 6 + {{37,5}^2} \cdot 2} \right) - {30,9^2} = 11,04.\)
Độ lệch chuẩn của mẫu số liệu phân xưởng A là \({s_A} = \sqrt {11,04} \approx 3,32\).
Phương sai của mẫu số liệu phân xưởng B là
\(s_B^2 = \frac{1}{{30}}\left( {{{25,5}^2} \cdot 5 + {{28,5}^2} \cdot 7 + {{31,5}^2} \cdot 9 + {{34,5}^2} \cdot 7 + {{37,5}^2} \cdot 2} \right) - {30,9^2} = 12,24.\)
Độ lệch chuẩn của mẫu số liệu phân xưởng B là \({s_B} = \sqrt {12,24} \approx 3,5\).
Vì \({s_A} < {s_B}\) nên tuổi thọ bóng đèn mẫu số liệu của phân xưởng A đồng đều hơn mẫu số liệu của phân xưởng B.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(0,812\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 0,286.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

