Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực A, B được cho dưới bảng sau
a) Khoảng biến thiên của mẫu số liệu nhà đầu tư vào lĩnh vực A là 25.
b) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là 5,83 (làm tròn đến hàng phần trăm).
c) Độ lệch chuẩn của mẫu số liệu nhà đầu tư vào lĩnh vực B là 7,01 (làm tròn đến hàng phần trăm).
d) Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B.
Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực A, B được cho dưới bảng sau

a) Khoảng biến thiên của mẫu số liệu nhà đầu tư vào lĩnh vực A là 25.
b) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là 5,83 (làm tròn đến hàng phần trăm).
c) Độ lệch chuẩn của mẫu số liệu nhà đầu tư vào lĩnh vực B là 7,01 (làm tròn đến hàng phần trăm).
d) Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B.
Quảng cáo
Trả lời:
a) Khoảng biến thiên của mẫu số liệu nhà đầu tư vào lĩnh vực A là 30 – 5 = 25.
b) Xét lĩnh vực A.
Ta có \(\overline {{x_A}} = \frac{{2.7,5 + 4.12,5 + 7.17,5 + 5.22,5 + 3.27,5}}{{2 + 4 + 7 + 5 + 3}} = \frac{{255}}{{14}}\).
Phương sai: \(s_A^2 = \frac{{{{2.7,5}^2} + {{4.12,5}^2} + {{7.17,5}^2} + {{5.22,5}^2} + {{3.27,5}^2}}}{{2 + 4 + 7 + 5 + 3}} - {\left( {\frac{{255}}{{14}}} \right)^2} = \frac{{5000}}{{147}}\).
Độ lệch chuẩn:\({s_A} = \sqrt {\frac{{5000}}{{147}}} \approx 5,83\).
c) Xét lĩnh vực B
Ta có \(\overline {{x_B}} = \frac{{5.7,5 + 4.12,5 + 6.17,5 + 2.22,5 + 4.27,5}}{{5 + 4 + 6 + 2 + 4}} = \frac{{695}}{{42}}\).
Phương sai: \(s_B^2 = \frac{{{{5.7,5}^2} + {{4.12,5}^2} + {{6.17,5}^2} + {{2.22,5}^2} + {{4.27,5}^2}}}{{5 + 4 + 6 + 2 + 4}} - {\left( {\frac{{695}}{{42}}} \right)^2} = \frac{{21650}}{{441}}\).
Độ lệch chuẩn: \({s_B} = \sqrt {\frac{{21650}}{{441}}} \approx 7,01\).
d) Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực B có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực A.
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số lượng khách du lịch đến tỉnh Quảng Ninh được cho dưới bảng sau

Cỡ mẫu n = 3 + 9 + 3 + 2 = 17.
Gọi x1; x2; …; x17 là số khách đến Quảng Ninh du lịch được sắp theo thứ tự không giảm.
Ta có \({Q_1} = \frac{{{x_4} + {x_5}}}{2}\) Î [5; 9) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 5 + \frac{{\frac{{17}}{4} - 3}}{9}.4 = \frac{{50}}{9}\).
Ta có \({Q_3} = \frac{{{x_{13}} + {x_{14}}}}{2}\) Î [9; 13) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 9 + \frac{{\frac{{3.17}}{4} - 12}}{3}.4 = 10\).
Khoảng tứ phân vị là DQ = 10 – \(\frac{{50}}{9}\) ≈ 4,44.
Trả lời: 4,44.
Lời giải
a) Khoảng biến thiên của tuổi thọ bóng đèn phân xưởng A là \(R = 39 - 24 = 15\).
b) Đối với mẫu số liệu phân xưởng A:
Cỡ mẫu n = 4 + 8 + 10 + 6 + 2 = 30.
Gọi \({x_1}\), \({x_1}\), \( \ldots \), \({x_{30}}\) là tuổi thọ bóng đèn phân xưởng A được sắp xếp theo thứ tự không giảm.
Khi đó tứ phân vị thứ nhất của mẫu số liệu \({x_8} \in [27;30)\), tứ phân vị thứ \(3\) của mẫu số liệu \({x_{23}} \in [33;36)\). Do đó
\({Q_1} = 27 + \frac{{7,5 - 4}}{8} \cdot 3 = 28,3125,\)
\({Q_3} = 33 + \frac{{22,5 - 22}}{6} \cdot 3 = 33,25.\)
Do đó \(\Delta Q = {Q_3} - {Q_1} = 33,25 - 28,3125 = 4,9375\).
Đối với mẫu số liệu phân xưởng B:
Cỡ mẫu n = 5 + 7 + 9 + 7 + 2 = 30.
Gọi \({x_1}\), \({x_1}\), \( \ldots \), \({x_{30}}\) là tuổi thọ bóng đèn phân xưởng B được sắp xếp theo thứ tự không giảm.
Khi đó tứ phân vị thứ nhất của mẫu số liệu \({x_8} \in [27;30)\), tứ phân vị thứ \(3\) của mẫu số liệu \({x_{23}} \in [33;36)\). Do đó
\({Q_1} = 27 + \frac{{7,5 - 5}}{7} \cdot 3 = \frac{{393}}{{14}},\) \({Q_3} = 33 + \frac{{22,5 - 21}}{7} \cdot 3 = \frac{{471}}{{14}}.\)
Do đó \(\Delta Q = {Q_3} - {Q_1} = \frac{{471}}{{14}} - \frac{{393}}{{14}} = \frac{{39}}{7}\).
c)
|
Giá trị đại diện |
\(25,5\) |
\(28,5\) |
\(31,5\) |
\(34,5\) |
\(37,5\) |
|
|
Số bóng đèn của phân xưởng A |
\(4\) |
\(8\) |
\(10\) |
\(6\) |
\(2\) |
\({n_A} = 30\) |
|
Số bóng đèn của phân xưởng B |
\(5\) |
\(7\) |
\(9\) |
\(7\) |
\(2\) |
\({n_B} = 30\) |
Số trung bình của phân xưởng A là \({\bar x_A} = \frac{{25,5 \cdot 4 + 28,5 \cdot 8 + 31,5 \cdot 10 + 34,5 \cdot 6 + 37,5 \cdot 2}}{{30}} = 30,9.\)
Số trung bình của phân xưởng B là \({\bar x_B} = \frac{{25,5 \cdot 5 + 28,5 \cdot 7 + 31,5 \cdot 9 + 34,5 \cdot 7 + 37,5 \cdot 2}}{{5 + 7 + 9 + 7 + 2}} = 30,9.\)
d) Phương sai của mẫu số liệu phân xưởng A là
\(s_A^2 = \frac{1}{{30}}\left( {{{25,5}^2} \cdot 4 + {{28,5}^2} \cdot 8 + {{31,5}^2} \cdot 10 + {{34,5}^2} \cdot 6 + {{37,5}^2} \cdot 2} \right) - {30,9^2} = 11,04.\)
Độ lệch chuẩn của mẫu số liệu phân xưởng A là \({s_A} = \sqrt {11,04} \approx 3,32\).
Phương sai của mẫu số liệu phân xưởng B là
\(s_B^2 = \frac{1}{{30}}\left( {{{25,5}^2} \cdot 5 + {{28,5}^2} \cdot 7 + {{31,5}^2} \cdot 9 + {{34,5}^2} \cdot 7 + {{37,5}^2} \cdot 2} \right) - {30,9^2} = 12,24.\)
Độ lệch chuẩn của mẫu số liệu phân xưởng B là \({s_B} = \sqrt {12,24} \approx 3,5\).
Vì \({s_A} < {s_B}\) nên tuổi thọ bóng đèn mẫu số liệu của phân xưởng A đồng đều hơn mẫu số liệu của phân xưởng B.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 0,286.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(7\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

