Bảng dưới đây thống kê cân nặng của 45 học sinh lớp 10 tại một trường THPT của Thành phố Hà Nội.

Khi đó độ lệch chuẩn của mẫu số liệu ghép nhóm trên là
\(1,15\).
\(5,39\).
\(2,15\).
\(3,25\).
Quảng cáo
Trả lời:
Đáp án đúng: B
Ta có: Số trung bình của mẫu số liệu ghép nhóm là:
\[\overline x = \frac{{8.42 + 12.46 + 8.50 + 10.54 + 7.58}}{{45}} \approx 49,64\]
Phương sai của mẫu số liệu ghép nhóm là:
\(\begin{array}{l}{S^2} = \frac{1}{{45}}\left[ {8.{{\left( {42 - 49,64} \right)}^2} + 12.{{\left( {46 - 49,64} \right)}^2} + 8.{{\left( {50 - 49,64} \right)}^2} + 10.{{\left( {54 - 49,64} \right)}^2} + 7.{{\left( {58 - 49,64} \right)}^2}} \right]\,\\\,\,\,\,\,\, \approx 29,03\end{array}\) Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(S = \sqrt {{S^2}} \approx \sqrt {29,03} \approx 5,39\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \[R = 120 - 70 = 50.\]
b) Số phần tử của mẫu là \[n = 30\].
Ta có: \[\frac{n}{4} = \frac{{30}}{4} = 7,5\] mà \[3 < 7,5 < 9\]. Suy ra nhóm \[2\] là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \[7,5\] nên nhóm này chứa tứ phân vị thứ nhất.
Áp dụng công thức, ta có tứ phân vị thứ nhất là: \[{Q_1} = 80 + \left( {\frac{{7,5 - 3}}{6}} \right).10 = 87,5\left( {gam} \right)\].
Ta có: \[\frac{{3n}}{4} = \frac{{3.30}}{4} = 22,5\] mà \[21 < 22,5 < 27\]. Suy ra nhóm \[4\] là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \[22,5\] nên nhóm này chứa tứ phân vị thứ ba.
Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 100 + \left( {\frac{{22,5 - 21}}{6}} \right).10 = 102,5\left( {gam} \right)\].
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \[\Delta Q = {Q_3} - {Q_1} = 102,5 - 87,5 = 15\].
c) Số trung bình cộng của mẫu số liệu ghép nhóm
\[\overline x = \frac{{3.75 + 6.85 + 12.95 + 6.105 + 3.115}}{{30}} = 95\left( {gam} \right)\].
d) Phương sai của mẫu số liệu ghép nhóm là:
\[{s^2} = \frac{1}{{30}}\left[ {3.{{\left( {75 - 95} \right)}^2} + 6.{{\left( {85 - 95} \right)}^2} + 12.{{\left( {95 - 95} \right)}^2} + 6.{{\left( {105 - 95} \right)}^2} + 3.{{\left( {115 - 95} \right)}^2}} \right] = 120\].
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Câu 2
26,2.
27,3.
28,4.
29,5.
Lời giải
Đáp án đúng: A

Giá trị trung bình \(\overline x = \frac{{17,5.10 + 22,5.12 + 27,5.14 + 32,5.9 + 37,5.5}}{{50}} = 26,2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\({s^2} \approx 4,87\).
\({s^2} \approx 2,87\).
\({s^2} \approx 1,87\).
\({s^2} \approx 3,87\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\[{s^2} = 83\].
\[{s^2} = 84\].
\[{s^2} = 85\].
\[{s^2} = 86\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Khối lượng của 30 củ khoai tây được thu hoạch ở một nông trại được thống kê như bảng sau:
(a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là \[50\].
(b) Khoảng tứ phân vị của mẫu số liệ (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid0-1756567951.png)






