Câu hỏi:

30/08/2025 35 Lưu

Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm được dùng để đo ….. của mẫu số liệu ghép nhóm xung quanh số trung bình của mẫu số liệu đó.

A.

Giá trị trung bình.

B.

Giá trị lớn nhất.

C.

Giá trị nhỏ nhất.

D.

Mức độ phân tán.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: D

Phương sai (độ lệch chuẩn) của mẫu số liệu ghép nhóm xấp xỉ phương sai (độ lệch chuẩn) của mẫu số liệu gốc và được dùng để đo mức độ phân tán của mẫu số liệu ghép nhóm đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Khoảng biến thiên của mẫu số liệu là: 10 – 5 = 5.

b) Ta có \(\overline {{x_A}} = \frac{{5,5.4 + 6,5.5 + 7,5.5 + 8,5.4 + 9,5.2}}{{4 + 5 + 5 + 4 + 2}} = \frac{{29}}{4}\).

\[s_A^{^2} = \frac{{{{\left( {5,5 - \frac{{29}}{4}} \right)}^2}.4 + {{\left( {6,5 - \frac{{29}}{4}} \right)}^2}.5 + {{\left( {7,5 - \frac{{29}}{4}} \right)}^2}.5 + {{\left( {8,5 - \frac{{29}}{4}} \right)}^2}.4 + {{\left( {9,5 - \frac{{29}}{4}} \right)}^2}.2}}{{4 + 5 + 5 + 4 + 2}} = \frac{{127}}{{80}}\].

c) \(\overline {{x_B}} = \frac{{5,5.3 + 6,5.6 + 7,5.5 + 8,5.5 + 9,5.1}}{{3 + 6 + 5 + 5 + 1}} = \frac{{29}}{4}\).

\(s_B^2 = \frac{{{{\left( {5,5 - \frac{{29}}{4}} \right)}^2}.3 + {{\left( {6,5 - \frac{{29}}{4}} \right)}^2}.6 + {{\left( {7,5 - \frac{{29}}{4}} \right)}^2}.5 + {{\left( {8,5 - \frac{{29}}{4}} \right)}^2}.5 + {{\left( {9,5 - \frac{{29}}{4}} \right)}^2}.1}}{{3 + 6 + 5 + 5 + 1}} = \frac{{103}}{{80}} = 1,2875\)

d) Có \({s_A} = \sqrt {\frac{{127}}{{80}}} \approx 1,26\); \({s_B} = \sqrt {\frac{{103}}{{80}}} \approx 1,13\).

Vì sB < sA nên mức lương khởi điểm của công nhân khu vực B đồng đều hơn công nhân khu vực A.

Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.

Lời giải

a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \[R = 120 - 70 = 50.\]

b) Số phần tử của mẫu là \[n = 30\].

Ta có: \[\frac{n}{4} = \frac{{30}}{4} = 7,5\] mà \[3 < 7,5 < 9\]. Suy ra nhóm \[2\] là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \[7,5\] nên nhóm này chứa tứ phân vị thứ nhất.

Áp dụng công thức, ta có tứ phân vị thứ nhất là: \[{Q_1} = 80 + \left( {\frac{{7,5 - 3}}{6}} \right).10 = 87,5\left( {gam} \right)\].

Ta có: \[\frac{{3n}}{4} = \frac{{3.30}}{4} = 22,5\] mà \[21 < 22,5 < 27\]. Suy ra nhóm \[4\] là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \[22,5\] nên nhóm này chứa tứ phân vị thứ ba.

Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 100 + \left( {\frac{{22,5 - 21}}{6}} \right).10 = 102,5\left( {gam} \right)\].

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \[\Delta Q = {Q_3} - {Q_1} = 102,5 - 87,5 = 15\].

c) Số trung bình cộng của mẫu số liệu ghép nhóm

\[\overline x = \frac{{3.75 + 6.85 + 12.95 + 6.105 + 3.115}}{{30}} = 95\left( {gam} \right)\].

d) Phương sai của mẫu số liệu ghép nhóm là:

\[{s^2} = \frac{1}{{30}}\left[ {3.{{\left( {75 - 95} \right)}^2} + 6.{{\left( {85 - 95} \right)}^2} + 12.{{\left( {95 - 95} \right)}^2} + 6.{{\left( {105 - 95} \right)}^2} + 3.{{\left( {115 - 95} \right)}^2}} \right] = 120\].

Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP