Anh Minh đầu tư số tiền bằng nhau vào hai lĩnh vực A và B. Biểu đồ dưới đây mô tả số tiền thu được mỗi tháng trong vòng 60 tháng theo mỗi lĩnh vực A và B.

Hiệu độ lệch chuẩn của số tiền thu được mỗi tháng khi đầu tư vào lĩnh vực A và B bằng bao nhiêu? (làm tròn kết quả đến hàng phần chục).
Anh Minh đầu tư số tiền bằng nhau vào hai lĩnh vực A và B. Biểu đồ dưới đây mô tả số tiền thu được mỗi tháng trong vòng 60 tháng theo mỗi lĩnh vực A và B.
Hiệu độ lệch chuẩn của số tiền thu được mỗi tháng khi đầu tư vào lĩnh vực A và B bằng bao nhiêu? (làm tròn kết quả đến hàng phần chục).
Quảng cáo
Trả lời:

Ta có bảng tần số ghép nhóm sau:

Ta có \(\overline {{x_A}} = \frac{{7,5.20 + 12,5.5 + 17,5.10 + 22,5.5 + 27,5.20}}{{20 + 5 + 10 + 5 + 20}} = 17,5\).
Phương sai:
\[s_A^2 = \frac{{{{\left( {7,5 - 17,5} \right)}^2}.20 + {{\left( {12,5 - 17,5} \right)}^2}.5 + {{\left( {17,5 - 17,5} \right)}^2}.10 + {{\left( {22,5 - 17,5} \right)}^2}.5 + {{\left( {27,5 - 17,5} \right)}^2}.20}}{{20 + 5 + 10 + 5 + 20}} = \frac{{425}}{6}\]
Độ lệch chuẩn: \({s_A} = \sqrt {\frac{{425}}{6}} \).
\(\overline {{x_B}} = \frac{{7,5.5 + 12,5.10 + 17,5.30 + 22,5.10 + 27,5.5}}{{5 + 10 + 30 + 10 + 5}} = 17,5\).
Phương sai:
\(s_B^2 = \frac{{{{\left( {7,5 - 17,5} \right)}^2}.5 + {{\left( {12,5 - 17,5} \right)}^2}.10 + {{\left( {17,5 - 17,5} \right)}^2}.30 + {{\left( {22,5 - 17,5} \right)}^2}.10 + {{\left( {27,5 - 17,5} \right)}^2}.5}}{{5 + 10 + 30 + 10 + 5}} = 25\)
Độ lệch chuẩn: sB = 5.
Hiệu độ lệch chuẩn: sA – sB\( = \sqrt {\frac{{425}}{6}} - 5 \approx 3,4\).
Trả lời: 3,4.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Khoảng biến thiên của mẫu số liệu là: 10 – 5 = 5.
b) Ta có \(\overline {{x_A}} = \frac{{5,5.4 + 6,5.5 + 7,5.5 + 8,5.4 + 9,5.2}}{{4 + 5 + 5 + 4 + 2}} = \frac{{29}}{4}\).
\[s_A^{^2} = \frac{{{{\left( {5,5 - \frac{{29}}{4}} \right)}^2}.4 + {{\left( {6,5 - \frac{{29}}{4}} \right)}^2}.5 + {{\left( {7,5 - \frac{{29}}{4}} \right)}^2}.5 + {{\left( {8,5 - \frac{{29}}{4}} \right)}^2}.4 + {{\left( {9,5 - \frac{{29}}{4}} \right)}^2}.2}}{{4 + 5 + 5 + 4 + 2}} = \frac{{127}}{{80}}\].
c) \(\overline {{x_B}} = \frac{{5,5.3 + 6,5.6 + 7,5.5 + 8,5.5 + 9,5.1}}{{3 + 6 + 5 + 5 + 1}} = \frac{{29}}{4}\).
\(s_B^2 = \frac{{{{\left( {5,5 - \frac{{29}}{4}} \right)}^2}.3 + {{\left( {6,5 - \frac{{29}}{4}} \right)}^2}.6 + {{\left( {7,5 - \frac{{29}}{4}} \right)}^2}.5 + {{\left( {8,5 - \frac{{29}}{4}} \right)}^2}.5 + {{\left( {9,5 - \frac{{29}}{4}} \right)}^2}.1}}{{3 + 6 + 5 + 5 + 1}} = \frac{{103}}{{80}} = 1,2875\)
d) Có \({s_A} = \sqrt {\frac{{127}}{{80}}} \approx 1,26\); \({s_B} = \sqrt {\frac{{103}}{{80}}} \approx 1,13\).
Vì sB < sA nên mức lương khởi điểm của công nhân khu vực B đồng đều hơn công nhân khu vực A.
Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.
Lời giải
Đáp án đúng: A

Giá trị trung bình \(\overline x = \frac{{17,5.10 + 22,5.12 + 27,5.14 + 32,5.9 + 37,5.5}}{{50}} = 26,2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.