Câu hỏi:

31/08/2025 21 Lưu

Số lượng khách hàng nữ mua hàng thời trang trong một ngày của một cửa hàng được thống kê trong bảng tần số ghép nhóm như sau

Số lượng khách hàng nữ mua hàng thời trang trong một ngày của một cửa hàng được thống kê trong bảng tần số ghép nhóm như sau

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên khoảng (ảnh 1)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên khoảng

A.

Q = 16,67.

B.
Q = 16,61.
C.
Q = 15,67.
D.
Q = 14,57.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: A

Cỡ mẫu n = 3 + 9 + 6 + 4 + 2 = 24.

Gọi x1; x2; ...; x24 là tuổi của 24 khách hàng nữ được sắp theo tứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_6} + {x_7}}}{2}\) mà \({x_6};{x_7} \in \left[ {30;40} \right)\) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 30 + \frac{{\frac{{24}}{4} - 3}}{9}.10 = \frac{{100}}{3}\).

\({Q_3} = \frac{{{x_{18}} + {x_{19}}}}{2}\) mà \({x_{18}} \in \left[ {40;50} \right),{x_{19}} \in \left[ {50;60} \right)\) nên Q3 = 50.

Suy ra \({\Delta _Q} = {Q_3} - {Q_1} = 50 - \frac{{100}}{3} \approx 16,67\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là R = 10 – 5 = 5.

b) Xét mẫu số liệu khu vực A:

Cỡ mẫu n = 4 + 5 + 5 + 4 + 2 = 20.

Gọi x1; x2; …; x20 là mức lương khởi điểm của 20 công nhân được sắp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_5} + {x_6}}}{2}\) mà x5; x6  [6; 7) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 6 + \frac{{\frac{{20}}{4} - 4}}{5}.1 = 6,2\).

Ta có \({Q_3} = \frac{{{x_{15}} + {x_{16}}}}{2}\) mà x15; x16  [8; 9) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 8 + \frac{{\frac{{3.20}}{4} - 14}}{4}.1 = \frac{{33}}{4}\).

Suy ra \({\Delta _Q} = \frac{{33}}{4} - 6,2 \approx 2,1\).

c) Xét mẫu số liệu khu vực B.

Có cỡ mẫu n = 3 + 6 + 5 + 5 + 1 = 20.

Gọi y1; y2; …; y20 lần lượt là mức lương khởi điểm của công nhân khu vực B được sắp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{y_5} + {y_6}}}{2}\) mà y5; y6  [6; 7) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 6 + \frac{{\frac{{20}}{4} - 3}}{6}.1 = \frac{{19}}{3}\).

Ta có \({Q_3} = \frac{{{y_{15}} + {y_{16}}}}{2}\) mà y15; y16  [8; 9) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 8 + \frac{{\frac{{3.20}}{4} - 14}}{5}.1 = \frac{{41}}{5}\).

Suy ra \({\Delta _Q} = \frac{{41}}{5} - \frac{{19}}{3} \approx 1,9\).

d) Mức lương khởi điểm của khu vực B phân bố đồng đều hơn.

Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.

Lời giải

Đáp án đúng: C

Ta có n = 3 + 12 + 15 + 24 + 2 = 56.

Gọi x1; x2; ...; x56 lần lượt là thời gian truy cập internet mỗi buổi tối của 56 học sinh được sắp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_{14}} + {x_{15}}}}{2}\) mà x14; x15  [12,5; 15,5) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 12,5 + \frac{{\frac{{56}}{4} - 3}}{{12}}.3 = 15,25\).

Ta có \({Q_3} = \frac{{{x_{42}} + {x_{43}}}}{2}\) mà \({x_{42}};{x_{43}} \in \left[ {18,5;21,5} \right)\)nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 18,5 + \frac{{\frac{{3.56}}{4} - 30}}{{24}}.3 = 20\).

Do đó \({\Delta _Q} = 20 - 15,25 = 4,75\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP