Câu hỏi:

31/08/2025 69 Lưu

Tìm hiểu thời gian sử dụng điện thoại trong tuần đầu tháng 6/2024 của kỳ nghỉ hè lớp chủ nhiệm. Giáo viên chủ nhiệm thi được kết quả sau:

Tìm hiểu thời gian sử dụng điện thoại trong tuần đầu tháng 6/2024 của kỳ nghỉ hè lớp chủ nhiệm. Giáo viên chủ nhiệm thi được kết quả sau:

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm này  (ảnh 1)

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25.

(b) Nhóm chứa tứ phân vị thứ ba là [15; 20).

(c) Số trung bình của mẫu số liệu là 10.

(d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm này lớn hơn 10.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Khoảng biến thiên R = 30 – 0 = 30.

b) Gọi x1; x2; …; x30 là thời gian sử dụng điện thoại của 30 học sinh được sắp theo thứ tự không giảm.

Ta có Q3 = x23  [15; 20) nên nhóm này chứa tứ phân vị thứ ba.

c)

Tìm hiểu thời gian sử dụng điện thoại trong tuần đầu tháng 6/2024 của kỳ nghỉ hè lớp chủ nhiệm. Giáo viên chủ nhiệm thi được kết quả sau:

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm này  (ảnh 2)

Ta có \(\overline x = \frac{{2,5.2 + 7,5.6 + 12,5.8 + 17,5.9 + 22,5.3 + 27,5.2}}{{30}} \approx 14,3\).

d) Ta có Q1 = x8 [5; 10) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 5 + \frac{{\frac{{30}}{4} - 2}}{6}.5 = \frac{{115}}{{12}}\).

Q3 = x23 [15; 20) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 15 + \frac{{\frac{{3.30}}{4} - 16}}{9}.5 = \frac{{335}}{{18}}\).

Suy ra \({\Delta _Q} = \frac{{335}}{{18}} - \frac{{115}}{{12}} \approx 9,03 < 10\).

Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là R = 10 – 5 = 5.

b) Xét mẫu số liệu khu vực A:

Cỡ mẫu n = 4 + 5 + 5 + 4 + 2 = 20.

Gọi x1; x2; …; x20 là mức lương khởi điểm của 20 công nhân được sắp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_5} + {x_6}}}{2}\) mà x5; x6  [6; 7) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 6 + \frac{{\frac{{20}}{4} - 4}}{5}.1 = 6,2\).

Ta có \({Q_3} = \frac{{{x_{15}} + {x_{16}}}}{2}\) mà x15; x16  [8; 9) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 8 + \frac{{\frac{{3.20}}{4} - 14}}{4}.1 = \frac{{33}}{4}\).

Suy ra \({\Delta _Q} = \frac{{33}}{4} - 6,2 \approx 2,1\).

c) Xét mẫu số liệu khu vực B.

Có cỡ mẫu n = 3 + 6 + 5 + 5 + 1 = 20.

Gọi y1; y2; …; y20 lần lượt là mức lương khởi điểm của công nhân khu vực B được sắp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{y_5} + {y_6}}}{2}\) mà y5; y6  [6; 7) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 6 + \frac{{\frac{{20}}{4} - 3}}{6}.1 = \frac{{19}}{3}\).

Ta có \({Q_3} = \frac{{{y_{15}} + {y_{16}}}}{2}\) mà y15; y16  [8; 9) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 8 + \frac{{\frac{{3.20}}{4} - 14}}{5}.1 = \frac{{41}}{5}\).

Suy ra \({\Delta _Q} = \frac{{41}}{5} - \frac{{19}}{3} \approx 1,9\).

d) Mức lương khởi điểm của khu vực B phân bố đồng đều hơn.

Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.

Lời giải

Đáp án đúng: C

Ta có n = 3 + 12 + 15 + 24 + 2 = 56.

Gọi x1; x2; ...; x56 lần lượt là thời gian truy cập internet mỗi buổi tối của 56 học sinh được sắp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_{14}} + {x_{15}}}}{2}\) mà x14; x15  [12,5; 15,5) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 12,5 + \frac{{\frac{{56}}{4} - 3}}{{12}}.3 = 15,25\).

Ta có \({Q_3} = \frac{{{x_{42}} + {x_{43}}}}{2}\) mà \({x_{42}};{x_{43}} \in \left[ {18,5;21,5} \right)\)nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 18,5 + \frac{{\frac{{3.56}}{4} - 30}}{{24}}.3 = 20\).

Do đó \({\Delta _Q} = 20 - 15,25 = 4,75\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP