Câu hỏi:

31/08/2025 8 Lưu

Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu \(A\) và \(B\) trong 50 ngày giao dịch liên tiếp.

Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu \(A\) và \(B\) trong 50 ngày giao dịch l (ảnh 1)

(a) Cỡ mẫu của cổ phiếu \(A\)là 50

(b) Xét mẫu số liệu của cổ phiếu \(A\)ta có phương sai của mẫu số liệu ghép nhóm là \(7,5216\)

(c) Xét mẫu số liệu của cổ phiếu \(B\) ta có số trung bình của mẫu số liệu ghép nhóm là \(115,28.{\rm{ }}\)

(d) Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro của các loại cổ phiếu có giá trị trung bình gần bằng nhau. Cổ phiếu nào có phương sai, độ lệch chuẩn cao hơn thì được coi là có độ rủi ro lớn hơn. Theo quan điểm trên, thì cổ phiếu \(A\) có độ rủi ro thấp hơn cổ phiếu \(B\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có bảng thống kê giá đóng cửa theo giá trị đại diện:

Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu \(A\) và \(B\) trong 50 ngày giao dịch l (ảnh 2)

a) Xét mẫu số liệu của cổ phiếu \(A\):

Cỡ mẫu của cổ phiếu \(A\): \({n_A} = 8 + 9 + 12 + 10 + 11 = 50\).

b) Số trung bình của mẫu số liệu ghép nhóm là

\({\bar x_1} = \frac{{8.121 + 9.123 + 12.125 + 10.127 + 11.129}}{{50}} = 125,28.{\rm{ }}\)

Phương sai của mẫu số liệu ghép nhóm là

\(S_1^2 = \frac{1}{{50}}\left( {{{8.121}^2} + {{9.123}^2} + {{12.125}^2} + {{10.127}^2} + {{11.129}^2}} \right) - {(125,28)^2} = 7,5216\).

Độ lệch chuẩn của mẫu số liệu ghép nhóm là \({S_1} = \sqrt {S_1^2} = \sqrt {7,5216} \).

c) Xét mẫu số liệu của cổ phiếu \(B\):

Số trung bình của mẫu số liệu ghép nhóm là

\({\bar x_2} = \frac{{16.121 + 4.123 + 3.125 + 6.127 + 21.129}}{{50}} = 125,48.{\rm{ }}\)

Phương sai của mẫu số liệu ghép nhóm là

\(S_2^2 = \frac{1}{{50}}\left( {{{16.121}^2} + {{4.123}^2} + {{3.125}^2} + {{6.127}^2} + {{21.129}^2}} \right) - {(125,48)^2} = 12,4096.\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là \({S_2} = \sqrt {S_2^2} = \sqrt {12,4096} \).

d) Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu \(A\)có độ rủi ro thấp hơn cổ phiếu \(B\).

Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sau khi điều tra về cân nặng của 40 học sinh trong lớp 12A ở một trường THPT X thu được kết quả trong mẫu ghép nhóm sau:

Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên ( làm tròn kết quả  (ảnh 2)

Số trung bình cộng của mẫu số liệu ghép nhóm là:

\[\overline x \, = \frac{{35.2 + 45.10 + 55.16 + 65.8 + 75.2 + 85.2}}{{40}} = 56\]

Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

\[\begin{array}{l}s\, = \sqrt {\frac{1}{{40}}\left[ {2.{{\left( {35 - 56} \right)}^2} + 10.{{\left( {45 - 56} \right)}^2} + 16.{{\left( {55 - 56} \right)}^2} + 8.{{\left( {65 - 56} \right)}^2} + 2.{{\left( {75 - 56} \right)}^2} + 2.{{\left( {85 - 56} \right)}^2}} \right]} \\ = 11,4\end{array}\]

Trả lời: 11,4.

Lời giải

a) Khoảng biến thiên của mẫu số liệu ghép nhóm là: \(R = 300 - 50 = 250\left( {{\rm{\;km}}} \right)\).

b) Cỡ mẫu \(n = 5 + 10 + 9 + 4 + 2 = 30\).

Gọi \({x_1}; \ldots ;{x_{30}}\) là mẫu số liệu gốc về độ dài quãng đường bác tài xế đã lái xe mỗi ngày trong một tháng được xếp theo thứ tự không giảm.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_8} \in \left[ {100;150} \right)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 100 + \frac{{\frac{{30}}{4} - 5}}{{10}}\left( {150 - 100} \right) = 112,5\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{23}} \in \left[ {150;200} \right)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 150 + \frac{{\frac{{3.30}}{4} - \left( {5 + 10} \right)}}{9}\left( {200 - 150} \right) = \frac{{575}}{3}\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({{\rm{\Delta }}_Q} = {Q_3} - {Q_1} = \frac{{575}}{3} - 112,5 \approx 79,17\).

c) Ta có bảng sau:

Một bác tài xế thống kê lại độ dài quãng đường (đơn vị: km ) bác đã lái xe mỗi ngày trong một tháng ở bảng sau:

(a) Khoảng biến thiên của mẫu số liệu ghép nhóm là \(250\left( {{\rm{\;km}}} \ (ảnh 2)

Số trung bình của mẫu số liệu ghép nhóm là: \(\overline x = \frac{{5.75 + 10.125 + 9.175 + 4.225 + 2.275}}{{30}} = 155\)

d) Phương sai của mẫu số liệu ghép nhóm là:

\({S^2} = \frac{1}{{30}}\left[ {{{5.75}^2} + {{10.125}^2} + {{9.175}^2} + {{4.225}^2} + {{2.275}^2}} \right] - {155^2} = 3100\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(S = \sqrt {{S^2}} = \sqrt {3100} \approx 55,68\).

Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP