Câu hỏi:

04/09/2025 29 Lưu

Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?     

A. \(y = {\tan ^2}x\).         
B. \(y = \cos 3x \cdot \sin x\).      
C. \(y = \cos x + \sin x\).   
D. \(y = \cos x \cdot {\sin ^2}x\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một hàm số có đồ thị đối xứng qua gốc tọa độ khi nó là hàm số lẻ.

Xét hàm số \(y = f\left( x \right) = \cos 3x \cdot \sin x\).

Tập xác định của hàm số là \(D = \mathbb{R}\).

Do đó nếu \(x\) thuộc tập xác định \(D\) thì \( - x\) cũng thuộc tập xác định \(D\).

Ta có \(f\left( { - x} \right) = \cos \left( { - 3x} \right) \cdot \sin \left( { - x} \right) = \cos 3x \cdot \left( { - \sin x} \right) = - \cos 3x \cdot \sin x = - f\left( x \right),\,\,\forall x \in D\).

Vậy hàm số \(y = \cos 3x \cdot \sin x\) là hàm số lẻ nên đồ thị của nó đối xứng qua gốc tọa độ. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày đầu tiên là \(150\,{\rm{mg}}\).

Sau ngày đầu, trước mỗi lần uống, hàm lượng thuốc cũ trong cơ thể vẫn còn \(5\% \).

Do đó, lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ hai là

\(150 + 150 \cdot 5\% = 150\left( {1 + 0,05} \right)\) (mg).

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ ba là

\(150 + 150\left( {1 + 0,05} \right) \cdot 5\% = 150 + 150\left( {0,05 + 0,{{05}^2}} \right) = 150\left( {1 + 0,05 + 0,{{05}^2}} \right)\) (mg).

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ tư là

\(150 + 150\left( {1 + 0,05 + 0,{{05}^2}} \right) \cdot 5\% = 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3}} \right)\) (mg).

Lượng thuốc trong cơ thể bệnh nhân sau khi uống viên thuốc của ngày thứ năm là

\(150 + 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3}} \right) \cdot 5\% = 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3} + 0,{{05}^4}} \right)\)\( = 157,8946875\,\,{\rm{(mg)}}.\)

Cứ tiếp tục như vậy, ta ước tính lượng thuốc trong cơ thể bệnh nhân nếu bệnh nhân sử dụng thuốc trong một thời gian dài là

\(S = 150\left( {1 + 0,05 + 0,{{05}^2} + 0,{{05}^3} + 0,{{05}^4} + \ldots } \right)\) (mg).

Nhận thấy rằng \(0,05 + 0,{05^2} + 0,{05^3} + 0,{05^4} + \ldots \) là tổng của một cấp số nhân lùi vô hạn với số hạng đầu \({u_1} = 0,05\) và công bội \(q = 0,05\).

Do đó, \(1 + 0,05 + 0,{05^2} + 0,{05^3} + 0,{05^4} + \ldots = 1 + \frac{{{u_1}}}{{1 - q}} = 1 + \frac{{0,05}}{{1 - 0,05}} = \frac{{20}}{{19}}\).

Suy ra \(S = 150 \cdot \frac{{20}}{{19}} = \frac{{3000}}{{19}}\).

Vậy lượng thuốc trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian dài ước tính khoảng \(\frac{{3000}}{{19}}\) mg.

Lời giải

Xét \({u_{n + 1}} - {u_n} = \frac{{m\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 1}} - \frac{{mn - 1}}{{n + 1}} = \frac{{mn + m - 1}}{{n + 2}} - \frac{{mn - 1}}{{n + 1}}\)

\( = \frac{{m{n^2} + 2mn + m - n - 1 - \left( {m{n^2} + 2mn - n - 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{{m + 1}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\).

Dãy số đã cho là dãy giảm \( \Leftrightarrow {u_{n + 1}} - {u_n} < 0 \Leftrightarrow \frac{{m + 1}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} < 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow m < - 1\)

\(\left( {{\rm{do }}\left( {n + 2} \right)\left( {n + 1} \right) > 0,\forall n \in {\mathbb{N}^*}} \right){\rm{. }}\)

Với \(m\) là số nguyên lớn nhất và \(m < - 1\) suy ra \(m = - 2\).

Đáp án: −2.

Câu 3

A. \({u_n} = \frac{1}{n}\).                                          
B. \({u_n} = 3n\).     
C. \({u_n} = {2^n} + 1\).  
D. \({u_n} = {2^n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {0;\pi } \right)\).                                         
B. \(\left( {\frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right)\).                
C. \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\).                   
D. \(\left( { - 3\pi ; - 2\pi } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - \frac{1}{3}.\)          
B. \(\frac{2}{3}.\)              
C. \( - \frac{2}{3}.\)                          
D. \(\frac{1}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP