Câu hỏi:

11/09/2025 270 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau.

Cho hàm số y = f( x ) có bảng biến thiên như hình vẽ sau.Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số bằng (ảnh 1)

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số bằng

A.

A. \(3\).

B.

B. \(2\).

C.

C. \(0\).

D.

D. \(1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to {0^ \pm }} f\left( x \right) = + \infty \), suy ra \(x = 0\) là tiệm cận đứng của đồ thị hàm số.

Lại có \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - 2\), suy ra \(y = - 2\) là tiệm cận ngang của đồ thị hàm số. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(A\left( {0;5} \right) \in \left( C \right)\) nên \(b = - 5\). Suy ra \(f\left( x \right) = \frac{{ - {x^2} + ax - 5}}{{x - 1}}\).

Gọi \(A'\left( {{x_{A'}};{y_{A'}}} \right)\) là điểm đối xứng với \(A\left( {0;5} \right)\) qua điểm \(I\left( {1;1} \right)\), ta được: \(\left\{ \begin{array}{l}\frac{{{x_{A'}} + 0}}{2} = 1\\\frac{{{y_{A'}} + 5}}{2} = 1\end{array} \right.\).

Suy ra \(A'\left( {2; - 3} \right)\).

\(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng nên \(A'\left( {2; - 3} \right) \in \left( C \right)\). Suy ra \(\frac{{ - {2^2} + 2a - 5}}{{2 - 1}} = - 3 \Leftrightarrow a = 3\).

Vậy \(T = \frac{a}{b} = \frac{3}{{ - 5}} = - 0,6\).

 Đáp án: \( - 0,6\).

Lời giải

a) Đúng. Dựa vào đồ thị ta thấy hệ số \[a < 0\].

b) Sai. Đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( { - 1;\, - 1} \right)\).

c) Đúng. Dựa vào đồ thị ta thấy hàm số đồng biến trên khoảng \(\left( { - 1;\,1} \right)\).

d) Sai. Đồ thị hàm số đi qua các điểm \(\left( { - 1;\, - 1} \right)\)\(\left( {1;\,3} \right)\) nên ta có hệ phương trình

\[\left\{ \begin{array}{l}f\left( { - 1} \right) = - 1 \Rightarrow - a + b - c + d = - 1\\f\left( 1 \right) = 3 \Rightarrow a + b + c + d = 3\end{array} \right. \Rightarrow a + c = 2\,\,(1)\].

\[f'\left( x \right) = 3a{x^2} + 2bx + c\] có hai nghiệm \[x = 1,{\rm{ }}x = - 1\] nên \[\left\{ \begin{array}{l}3a + 2b + c = 0\\3a - 2b + c = 0\end{array} \right.\,\,\,(2)\].

Từ (1) và (2), giải hệ phương trình ta suy ra \[a = - 1;\,b = 0;\,c = 3;\,d = 1\].

Do đó \[f\left( x \right) = - {x^3} + 3x + 1 \Rightarrow f\left( 3 \right) = - 17\].

Câu 6

A.
A. \[y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\].   
B.
B. \[y = \frac{{{x^2} + x + 1}}{{ - x + 1}}\].      
C.
C. \[y = \frac{{{x^2} - x + 1}}{{ - x + 1}}\].  
D.
D. \[y = \frac{{ - {x^2} - x - 1}}{{2x - 1}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.
A. \(\left( {4\,;\, + \infty } \right)\).   
B.
B. \(\left( {2\,;\,4} \right)\).    
C.
C. \(\left( {0\,;\,4} \right)\).        
D.
D. \(\left( {2\,;\, + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP