Đường cong cho trong hình bên là đồ thị của hàm số nào trong các hàm số dưới đây?
Đường cong cho trong hình bên là đồ thị của hàm số nào trong các hàm số dưới đây?

Quảng cáo
Trả lời:
Đồ thị hàm số có tiệm cận đứng \(x = 1\) nên loại A, D.
Đồ thị hàm số có tiệm cận xiên \(y = - x\) nên loại B. Chọn C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(A\left( {0;5} \right) \in \left( C \right)\) nên \(b = - 5\). Suy ra \(f\left( x \right) = \frac{{ - {x^2} + ax - 5}}{{x - 1}}\).
Gọi \(A'\left( {{x_{A'}};{y_{A'}}} \right)\) là điểm đối xứng với \(A\left( {0;5} \right)\) qua điểm \(I\left( {1;1} \right)\), ta được: \(\left\{ \begin{array}{l}\frac{{{x_{A'}} + 0}}{2} = 1\\\frac{{{y_{A'}} + 5}}{2} = 1\end{array} \right.\).
Suy ra \(A'\left( {2; - 3} \right)\).
Vì \(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng nên \(A'\left( {2; - 3} \right) \in \left( C \right)\). Suy ra \(\frac{{ - {2^2} + 2a - 5}}{{2 - 1}} = - 3 \Leftrightarrow a = 3\).
Vậy \(T = \frac{a}{b} = \frac{3}{{ - 5}} = - 0,6\).
Đáp án: \( - 0,6\).
Lời giải
a) Đúng. Dựa vào đồ thị ta thấy hệ số \[a < 0\].
b) Sai. Đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( { - 1;\, - 1} \right)\).
c) Đúng. Dựa vào đồ thị ta thấy hàm số đồng biến trên khoảng \(\left( { - 1;\,1} \right)\).
d) Sai. Đồ thị hàm số đi qua các điểm \(\left( { - 1;\, - 1} \right)\) và \(\left( {1;\,3} \right)\) nên ta có hệ phương trình
\[\left\{ \begin{array}{l}f\left( { - 1} \right) = - 1 \Rightarrow - a + b - c + d = - 1\\f\left( 1 \right) = 3 \Rightarrow a + b + c + d = 3\end{array} \right. \Rightarrow a + c = 2\,\,(1)\].
\[f'\left( x \right) = 3a{x^2} + 2bx + c\] có hai nghiệm \[x = 1,{\rm{ }}x = - 1\] nên \[\left\{ \begin{array}{l}3a + 2b + c = 0\\3a - 2b + c = 0\end{array} \right.\,\,\,(2)\].
Từ (1) và (2), giải hệ phương trình ta suy ra \[a = - 1;\,b = 0;\,c = 3;\,d = 1\].
Do đó \[f\left( x \right) = - {x^3} + 3x + 1 \Rightarrow f\left( 3 \right) = - 17\].Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(3\).
B. \(2\).
C. \(0\).
D. \(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


