Câu hỏi:

11/09/2025 400 Lưu

Đường cong cho trong hình bên là đồ thị của hàm số nào trong các hàm số dưới đây?

Đường cong cho trong hình bên là đồ thị của hàm số nào trong các hàm số dưới đây? (ảnh 1)

A.
A. \[y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\].   
B.
B. \[y = \frac{{{x^2} + x + 1}}{{ - x + 1}}\].      
C.
C. \[y = \frac{{{x^2} - x + 1}}{{ - x + 1}}\].  
D.
D. \[y = \frac{{ - {x^2} - x - 1}}{{2x - 1}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đồ thị hàm số có tiệm cận đứng \(x = 1\) nên loại A, D.

Đồ thị hàm số có tiệm cận xiên \(y = - x\) nên loại B. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(A\left( {0;5} \right) \in \left( C \right)\) nên \(b = - 5\). Suy ra \(f\left( x \right) = \frac{{ - {x^2} + ax - 5}}{{x - 1}}\).

Gọi \(A'\left( {{x_{A'}};{y_{A'}}} \right)\) là điểm đối xứng với \(A\left( {0;5} \right)\) qua điểm \(I\left( {1;1} \right)\), ta được: \(\left\{ \begin{array}{l}\frac{{{x_{A'}} + 0}}{2} = 1\\\frac{{{y_{A'}} + 5}}{2} = 1\end{array} \right.\).

Suy ra \(A'\left( {2; - 3} \right)\).

\(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng nên \(A'\left( {2; - 3} \right) \in \left( C \right)\). Suy ra \(\frac{{ - {2^2} + 2a - 5}}{{2 - 1}} = - 3 \Leftrightarrow a = 3\).

Vậy \(T = \frac{a}{b} = \frac{3}{{ - 5}} = - 0,6\).

 Đáp án: \( - 0,6\).

Lời giải

a) Đúng. Dựa vào đồ thị ta thấy hệ số \[a < 0\].

b) Sai. Đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( { - 1;\, - 1} \right)\).

c) Đúng. Dựa vào đồ thị ta thấy hàm số đồng biến trên khoảng \(\left( { - 1;\,1} \right)\).

d) Sai. Đồ thị hàm số đi qua các điểm \(\left( { - 1;\, - 1} \right)\)\(\left( {1;\,3} \right)\) nên ta có hệ phương trình

\[\left\{ \begin{array}{l}f\left( { - 1} \right) = - 1 \Rightarrow - a + b - c + d = - 1\\f\left( 1 \right) = 3 \Rightarrow a + b + c + d = 3\end{array} \right. \Rightarrow a + c = 2\,\,(1)\].

\[f'\left( x \right) = 3a{x^2} + 2bx + c\] có hai nghiệm \[x = 1,{\rm{ }}x = - 1\] nên \[\left\{ \begin{array}{l}3a + 2b + c = 0\\3a - 2b + c = 0\end{array} \right.\,\,\,(2)\].

Từ (1) và (2), giải hệ phương trình ta suy ra \[a = - 1;\,b = 0;\,c = 3;\,d = 1\].

Do đó \[f\left( x \right) = - {x^3} + 3x + 1 \Rightarrow f\left( 3 \right) = - 17\].

Câu 6

A.
A. \(\left( {4\,;\, + \infty } \right)\).   
B.
B. \(\left( {2\,;\,4} \right)\).    
C.
C. \(\left( {0\,;\,4} \right)\).        
D.
D. \(\left( {2\,;\, + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP