Cho tam giác \(ABC\) cân tại \(A.\) Kẻ các đường cao \(BE,\;CD\) của tam giác \(ABC.\)
a) Tam giác \(ADE\) cân tại \(A.\)
b) \(\widehat {ABC} > \widehat {ADE}.\)
c) \(DE\;{\rm{//}}\;BC.\)
d) Tứ giác \(BDEC\) là hình thang cân.
Cho tam giác \(ABC\) cân tại \(A.\) Kẻ các đường cao \(BE,\;CD\) của tam giác \(ABC.\)
a) Tam giác \(ADE\) cân tại \(A.\)
b) \(\widehat {ABC} > \widehat {ADE}.\)
c) \(DE\;{\rm{//}}\;BC.\)
d) Tứ giác \(BDEC\) là hình thang cân.
Quảng cáo
Trả lời:

a) Đúng.
Vì \(BE,\;CD\) là các đường cao của tam giác \(ABC\) nên \(BE \bot AC,\;CD \bot AB.\)
Do đó, \(\widehat {BEC} = \widehat {BEA} = \widehat {ADC} = \widehat {BDC} = 90^\circ .\)
Tam giác \(ABC\) cân tại \(A\) nên \(AB = AC,\;\widehat {ABC} = \widehat {ACB}.\)
Tam giác \(ACD\) và tam giác \(ABE\) có: \(\widehat {ADC} = \widehat {BEA} = 90^\circ ,\;AB = AC,\;\widehat A\) chung.
Do đó, \(\Delta ACD = \Delta ABE\;\left( {ch - gn} \right).\) Suy ra, \(AD = AE\) nên tam giác \(ADE\) cân tại \(A.\)
b) Sai.
\(\Delta ABC\) có: \(\widehat {ABC} + \widehat {ACB} + \widehat A = 180^\circ \) nên \(\widehat {ABC} + \widehat {ABC} + \widehat A = 180^\circ .\)Do đó, \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\;\left( 1 \right).\)
Vì tam giác \(ADE\) cân tại \(A\) nên \(\widehat {ADE} = \widehat {AED}.\)
Mà \(\widehat {ADE} + \widehat {AED} + \widehat A = 180^\circ \) suy ra \(\widehat {ADE} + \widehat {ADE} + \widehat A = 180^\circ \) nên \(\widehat {ADE} = \frac{{180^\circ - \widehat A}}{2}\;\left( 2 \right).\)
Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có: \(\widehat {ADE} = \widehat {ABC}.\)
c) Đúng.
Vì \(\widehat {ADE} = \widehat {ABC,}\) mà hai góc này ở vị trí đồng vị nên \(DE\;{\rm{//}}\;BC.\)
d) Đúng.
Tứ giác \(BDEC\) có: \(DE\;{\rm{//}}\;BC\) nên tứ giác \(BDEC\) là hình thang.
Mà \(\widehat {DBC} = \widehat {ECB}\) nên tứ giác \(BDEC\) là hình thang cân.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng.
Tứ giác \(ABCD\) có \(AB\,{\rm{//}}\,CD\) nên tứ giác \(ABCD\) là hình thang.
Mà \(AC = BD\) nên tứ giác \(ABCD\) là hình thang cân.
b) Sai.
Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat {DAB} = \widehat {ABC} = 100^\circ .\) Vậy \(\widehat {DAB} = 100^\circ .\)
c) Đúng.
Kẻ \(Bd\) là tia đối của tia \(BC.\) Vì \(AB\,{\rm{//}}\,CD\) nên \(\widehat C = \widehat {ABd}\) (hai góc đồng vị).
Mà \(\widehat {ABd} + \widehat {ABC} = 180^\circ \) (hai góc kề bù) nên \(\widehat {ABC} + \widehat {BCD} = 180^\circ .\) Vậy \(\widehat {ABC} + \widehat C = 180^\circ .\)
d) Đúng.
Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat D = \widehat C.\)
Ta có: \(\widehat {ABC} + \widehat C = 180^\circ \) nên \(100^\circ + \widehat C = 180^\circ \) nên \(\widehat C = 80^\circ .\) Vậy \(\widehat D = 80^\circ .\)
Lời giải
Đáp án: \(60\)
Vì tứ giác \(ABCD\) là hình thang cân nên \(\widehat A = \widehat B,\;\widehat C = \widehat D.\)
Lại có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác)
\(\widehat A + \widehat A + \widehat C + \widehat C = 360^\circ \)
\(2\left( {\widehat A + \widehat C} \right) = 360^\circ \)
\(\widehat A + \widehat C = 180^\circ .\)
Mà \(\widehat A = 2\widehat C\) nên \(\widehat C + 2\widehat C = 180^\circ .\) Vậy \(\widehat C = 60^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

