Câu hỏi:

10/09/2025 9 Lưu

Cho tam giác \(ABC\) cân tại \(A.\) Kẻ các đường cao \(BE,\;CD\) của tam giác \(ABC.\)  

          a) Tam giác \(ADE\) cân tại \(A.\)

          b) \(\widehat {ABC} > \widehat {ADE}.\)

          c) \(DE\;{\rm{//}}\;BC.\)

          d) Tứ giác \(BDEC\) là hình thang cân.  

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

VVVVV (ảnh 1)

a) Đúng.

\(BE,\;CD\) là các đường cao của tam giác \(ABC\) nên \(BE \bot AC,\;CD \bot AB.\)

Do đó, \(\widehat {BEC} = \widehat {BEA} = \widehat {ADC} = \widehat {BDC} = 90^\circ .\)

Tam giác \(ABC\) cân tại \(A\) nên \(AB = AC,\;\widehat {ABC} = \widehat {ACB}.\)

Tam giác \(ACD\) và tam giác \(ABE\) có: \(\widehat {ADC} = \widehat {BEA} = 90^\circ ,\;AB = AC,\;\widehat A\) chung.

Do đó, \(\Delta ACD = \Delta ABE\;\left( {ch - gn} \right).\) Suy ra, \(AD = AE\) nên tam giác \(ADE\) cân tại \(A.\)

b) Sai.

\(\Delta ABC\) có: \(\widehat {ABC} + \widehat {ACB} + \widehat A = 180^\circ \) nên \(\widehat {ABC} + \widehat {ABC} + \widehat A = 180^\circ .\)Do đó, \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\;\left( 1 \right).\)

Vì tam giác \(ADE\) cân tại \(A\) nên \(\widehat {ADE} = \widehat {AED}.\)

\(\widehat {ADE} + \widehat {AED} + \widehat A = 180^\circ \) suy ra \(\widehat {ADE} + \widehat {ADE} + \widehat A = 180^\circ \) nên \(\widehat {ADE} = \frac{{180^\circ - \widehat A}}{2}\;\left( 2 \right).\)

Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có: \(\widehat {ADE} = \widehat {ABC}.\)

c) Đúng.

\(\widehat {ADE} = \widehat {ABC,}\) mà hai góc này ở vị trí đồng vị nên \(DE\;{\rm{//}}\;BC.\)

d) Đúng.

Tứ giác \(BDEC\) có: \(DE\;{\rm{//}}\;BC\) nên tứ giác \(BDEC\) là hình thang.

\(\widehat {DBC} = \widehat {ECB}\) nên tứ giác \(BDEC\) là hình thang cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(90\)

BBBBBBB (ảnh 1)

Vì tứ giác \(ABCD\) là hình thang cân nên \(AD = BC,\;AC = BD,\;\widehat {ADC} = \widehat {BCD}.\)

Tam giác \(ABD\) và tam giác \(BAC\) có: \(AD = BC,\;AC = BD,\;AB\) chung.

Do đó, \(\Delta ABD = \Delta BAC\;\left( {c - c - c} \right).\) Suy ra, \(\widehat {ABP} = \widehat {BAP}\) nên tam giác \(APB\) cân tại \(P.\)

Suy ra: \(AP = PB.\) Do đó, điểm \(P\) thuộc đường trung trực của đoạn thẳng \(AB\;\left( 1 \right).\)

\(AB\,{\rm{//}}\,CD\) nên \(\widehat {ADC} = \widehat {QAB},\;\widehat {QBA} = \widehat {BCD}\) (các góc đồng vị).

Lại có: \(\widehat {ADC} = \widehat {BCD}\;\left( {cmt} \right)\) nên \(\widehat {QAB} = \widehat {QBA}.\) Do đó, tam giác \(QAB\) cân tại \(Q.\)

Suy ra \(QA = QB.\) Do đó, điểm \(Q\) thuộc đường trung trực của đoạn thẳng \(AB\;\left( 2 \right).\)

Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có: \(PQ\) là đường trung trực của đoạn thẳng \(AB.\)

Suy ra: \(PQ \bot AB\) tại \(I.\) Vậy \(\widehat {QIB} = 90^\circ .\)

Lời giải

Đáp án: \(150\)

VVVVVVV (ảnh 1)

Kẻ \(Bk\) là tia đối của tia \(BC.\)

\(AB\,{\rm{//}}\,CD\) nên \(\widehat C = \widehat {{B_2}}\) (hai góc đồng vị).

Ta có: \(\widehat {{B_1}} + \widehat {{B_2}} = 180^\circ \) (hai góc kề bù) nên \(\widehat C + \widehat {{B_1}} = 180^\circ .\) Suy ra: \(\widehat {{B_1}} = 180^\circ - \widehat C.\)

Theo giả thiết: \(\widehat {{B_1}} - \widehat C = 60^\circ \) nên \(180^\circ - \widehat C - \widehat C = 60^\circ .\) Suy ra: \(\widehat C = 60^\circ .\) Do đó, \(\widehat {{B_1}} = 180^\circ - 60^\circ = 120^\circ .\)

Lại có: \(\widehat C - \widehat D = 30^\circ \) nên \(\widehat D = 60^\circ - 30^\circ = 30^\circ .\)

Ta có: \[\widehat A + \widehat {{B_1}} + \widehat C + \widehat D = 360^\circ \] (tổng các góc trong một tứ giác)

Suy ra: \[\widehat A = 360^\circ - \widehat {{B_1}} - \widehat C - \widehat D = 360^\circ - 120^\circ - 60^\circ - 30^\circ = 150^\circ .\]

Vậy \[\widehat A = 150^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP