Hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ dưới đây.

Cho các khẳng định sau:
(1) Đồ thị hàm số có tiệm cận đứng \(x = - 2.\)
(2) Hàm số đạt giá trị cực đại tại \(x = 0.\)
(3) Hàm số đồng biến trên \(\left( { - 2;\,0} \right)\).
(4) Hàm số có tiệm cận ngang \(y = 1.\)
Số khẳng định đúng là:
Quảng cáo
Trả lời:
Khẳng định (1) đúng; khẳng định (2) sai; khẳng định (3) đúng và khẳng định (4) sai.
Vậy có 2 khẳng định đúng. Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Vì \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - \left( {x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{2x + 1}} = 0\) nên đường thẳng \(y = x + 3\) là tiệm cận xiên của đồ thị hàm số đã cho. Chọn C.
Lời giải
a) Ta có tập xác định \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
Có \(y' = \frac{{ - 1}}{{{{\left( { - x + 1} \right)}^2}}} < 0,\forall x \ne 1\).
Bảng biến thiên

b) Giao của hai đường tiệm cận là tâm đối xứng của đồ thị hàm số. Do đó tâm đối xứng là \(I\left( {1; - 2} \right)\).
c) Đường tiệm cận đứng của đồ thị hàm số là \(x = 1\).
d) Đường tiệm cận ngang của đồ thị hàm số là \(y = - 2\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


