Câu hỏi:

10/09/2025 32 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên sau:

cccccccc (ảnh 1)

Tìm tổng số các giá trị nguyên dương của tham số \(m \in \left( { - 10\,;\,10} \right)\) để đồ thị hàm số \(y = f\left( x \right)\) có tổng số đường tiệm cận đứng và đường tiệm cận ngang là \(4\).

A. \(42\).                                 
B. \(45\).                                 
C. \( - 3\).           
D. \(0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ bảng biến thiên ta có \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 0\)\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \left( {m - 1} \right)\left( {2 - m} \right)\).

Suy ra tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\)\(y = 0\)\(y = \left( {m - 1} \right)\left( {2 - m} \right)\).

Lại có \(\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = + \infty \) suy ra tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\)\(x = - 2\).

\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = - \infty \) suy ra tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\)\(x = 2\).

Đề đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang là \(4\) khi và chỉ khi \(\left( {m - 1} \right)\left( {2 - m} \right) \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m \ne 1\\m \ne 2\end{array} \right.\).

\(m \in \left( { - 10\,;\,10} \right)\)\(m\) là số nguyên dương nên \(m \in \left\{ {3\,;\,4\,;\,5\,;\,6\,;\,7\,;\,8\,;\,9} \right\}\).

Vậy \(3 + 4 + 5 + 6 + 7 + 8 + 9 = 42\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = 2x + 1\).                    
B. \(y = x - 3\).                       
C. \(y = x + 3\).                                          
D. \(y = 2x - 1\).

Lời giải

\(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - \left( {x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{2x + 1}} = 0\) nên đường thẳng \(y = x + 3\) là tiệm cận xiên của đồ thị hàm số đã cho. Chọn C.

Lời giải

Xét hàm số \[y = f\left( x \right)\].Từ bảng biến thiên ta có:

a) \[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty \], \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 10\].

Đồ thị hàm số \[y = f\left( x \right)\] có một tiệm cận ngang là đường thẳng \(y = 10\).

b) \[\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = - 3\],\[\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = + \infty \]. Đồ thị hàm số \[y = f\left( x \right)\] có tiệm cận đứng là đường thẳng \(x = - 2\).

+) \[\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = + \infty \],\[\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = - \infty \]. Đồ thị hàm số \[y = f\left( x \right)\]có tiệm cận đứng là đường thẳng \(x = 2\).

c) Tổng đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 3.

d) Xét hàm số\[y = \frac{1}{{2f\left( x \right) + 6}}\].

Đặt \[g\left( x \right) = \frac{1}{{2f\left( x \right) + 6}}\], ta có hàm số xác định trên \[\mathbb{R}\backslash \left\{ { \pm 2;a} \right\}\], trong đó \[f\left( a \right) = - 3\]\[a \in \left( {2; + \infty } \right)\]. Khi đó ta có

\[\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) + 6}} = 0\]\[\mathop {\lim }\limits_{x \to  + \infty } g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + 6}} = \frac{1}{{26}}\] nên \[y = 0\]\[y = \frac{1}{{26}}\] là hai đường tiệm cận ngang.

Mặt khác ta có

\[\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right) + 6}} = + \infty \Rightarrow x = - 2\] là tiệm cận đứng;

\[\mathop {\lim }\limits_{x \to {2^ \pm }} g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to {2^ \pm }} f\left( x \right) + 6}} = 0 \Rightarrow x = 2\] không là tiệm cận đứng;

\[\mathop {\lim }\limits_{x \to {a^ + }} g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) + 6}} = + \infty \Rightarrow x = a\] là tiệm cận đứng;

Vậy đồ thị hàm số \[y = \frac{1}{{2f\left( x \right) + 6}}\]\[4\] đường tiệm cận.

Đáp án: a) Đúng;   b) Sai; c) Đúng; d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = 2x - 5\).                     
B. \(y = x - 2\).                       
C. \(y = x + 5\).                                          
D. \(y = x - 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 0.                                        
B. 1.                                        
C. 2.                                            
D. 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP