Câu hỏi:

10/09/2025 52 Lưu

Hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Hỏi hàm số đó là hàm số nào? (ảnh 1)

A. \(y = \frac{{2 - x}}{{x - 1}}\).                                          
B. \(y = \frac{{x - 1}}{{x + 1}}\).        
C. \(y = \frac{{x - 2}}{{x - 1}}\).                                       
D. \(y = \frac{{x + 1}}{{x - 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào đồ thị hàm số, ta có:

Đồ thị hàm số có tiệm cận đứng là \(x = 1\) và tiệm cận ngang là \(y = 1\). Do đó loại A, B.

Nhận thấy đồ thị hàm số đi qua điểm (0; −1) . Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = 2x + 1\).                    
B. \(y = x - 3\).                       
C. \(y = x + 3\).                                          
D. \(y = 2x - 1\).

Lời giải

\(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - \left( {x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{2x + 1}} = 0\) nên đường thẳng \(y = x + 3\) là tiệm cận xiên của đồ thị hàm số đã cho. Chọn C.

Lời giải

a) Có \(y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\).

b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{x + 1}} = 1;\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{x + 1}} = 1\) nên \(y = 1\) là tiệm cận ngang của đồ thị hàm số.

c) \(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{x - 1}}{{x + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{x - 1}}{{x + 1}} = - \infty \) nên \(x = - 1\) là tiệm cận đứng của đồ thị hàm số.

Khi đó tâm đối xứng của đồ thị hàm số là giao điểm của hai đường tiệm cận có tọa độ là \(\left( { - 1;1} \right)\).

d) Gọi \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\)\( \Rightarrow M\left( {{x_0};1 - \frac{2}{{{x_0} + 1}}} \right)\).

Khoảng cách từ M đến tiệm cận đứng: \({d_1} = \left| {{x_0} + 1} \right|\).

Khoảng cách từ M đến tiệm cận ngang: \({d_2} = \left| {{y_0} - 1} \right| = \left| {1 - \frac{2}{{{x_0} + 1}} - 1} \right| = \frac{2}{{\left| {{x_0} + 1} \right|}}\).

Vậy \({d_1}.{d_2} = 2\).

Đáp án: a) Đúng;   b) Đúng; c) Sai; d) Sai.

Câu 4

A. \(y = 2x - 5\).                     
B. \(y = x - 2\).                       
C. \(y = x + 5\).                                          
D. \(y = x - 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 0.                                        
B. 1.                                        
C. 2.                                            
D. 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP