Cho hàm số \[y = f\left( x \right)\] xác định và có đạo hàm trên \[\mathbb{R}\backslash \left\{ { \pm 2} \right\}\]. Hàm số \[f\left( x \right)\] có bảng biến thiên như hình vẽ dưới đây

a) Đường tiệm cận ngang của đồ thị hàm số \[y = f\left( x \right)\]là đường thẳng \(y = 10\).
b) Một đường tiệm cận đứng của đồ thị hàm số \[y = f\left( x \right)\]là đường thẳng \(x = - 3\).
c) Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = f\left( x \right)\]là 3.
d) Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = \frac{1}{{2f\left( x \right) + 6}}\] là 4.
Cho hàm số \[y = f\left( x \right)\] xác định và có đạo hàm trên \[\mathbb{R}\backslash \left\{ { \pm 2} \right\}\]. Hàm số \[f\left( x \right)\] có bảng biến thiên như hình vẽ dưới đây

a) Đường tiệm cận ngang của đồ thị hàm số \[y = f\left( x \right)\]là đường thẳng \(y = 10\).
b) Một đường tiệm cận đứng của đồ thị hàm số \[y = f\left( x \right)\]là đường thẳng \(x = - 3\).
c) Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = f\left( x \right)\]là 3.
d) Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = \frac{1}{{2f\left( x \right) + 6}}\] là 4.
Quảng cáo
Trả lời:

Xét hàm số \[y = f\left( x \right)\].Từ bảng biến thiên ta có:
a) \[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty \], \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 10\].
Đồ thị hàm số \[y = f\left( x \right)\] có một tiệm cận ngang là đường thẳng \(y = 10\).
b) \[\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = - 3\],\[\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = + \infty \]. Đồ thị hàm số \[y = f\left( x \right)\] có tiệm cận đứng là đường thẳng \(x = - 2\).
+) \[\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = + \infty \],\[\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = - \infty \]. Đồ thị hàm số \[y = f\left( x \right)\]có tiệm cận đứng là đường thẳng \(x = 2\).
c) Tổng đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 3.
d) Xét hàm số\[y = \frac{1}{{2f\left( x \right) + 6}}\].
Đặt \[g\left( x \right) = \frac{1}{{2f\left( x \right) + 6}}\], ta có hàm số xác định trên \[\mathbb{R}\backslash \left\{ { \pm 2;a} \right\}\], trong đó \[f\left( a \right) = - 3\] và \[a \in \left( {2; + \infty } \right)\]. Khi đó ta có
\[\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) + 6}} = 0\] và \[\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + 6}} = \frac{1}{{26}}\] nên \[y = 0\] và \[y = \frac{1}{{26}}\] là hai đường tiệm cận ngang.
Mặt khác ta có
\[\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right) + 6}} = + \infty \Rightarrow x = - 2\] là tiệm cận đứng;
\[\mathop {\lim }\limits_{x \to {2^ \pm }} g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to {2^ \pm }} f\left( x \right) + 6}} = 0 \Rightarrow x = 2\] không là tiệm cận đứng;
\[\mathop {\lim }\limits_{x \to {a^ + }} g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) + 6}} = + \infty \Rightarrow x = a\] là tiệm cận đứng;
Vậy đồ thị hàm số \[y = \frac{1}{{2f\left( x \right) + 6}}\] có \[4\] đường tiệm cận.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Vì \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {f\left( x \right) - \left( {x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{{2x + 1}} = 0\) nên đường thẳng \(y = x + 3\) là tiệm cận xiên của đồ thị hàm số đã cho. Chọn C.
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} + m}}{{{x^2} - 3x + 2}} = 1\). Suy ra \(y = 1\) là tiệm cận ngang của đồ thị hàm số.
Ta có \(y = \frac{{{x^2} + m}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).
Do đó để đồ thị hàm số có đúng hai đường tiệm cận thì đồ thị hàm số có đúng 1 tiệm cận đứng.
Do đó phương trình \({x^2} + m = 0\) phải nhận \(x = 1\) hoặc \(x = 2\) làm nghiệm.
Suy ra \(\left[ \begin{array}{l}{1^2} + m = 0\\{2^2} + m = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = - 1\\m = - 4\end{array} \right.\).
Vậy có 2 giá trị của m.
Trả lời: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.