Câu hỏi:

11/09/2025 57 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Mặt bên ASB là tam giác vuông cân tại \(S\) và có cạnh \(AB = a\). Tính \(\overrightarrow {DC} .\overrightarrow {AS} \).

A. \(\frac{a}{{\sqrt 2 }}\) .    
B. \({a^2}\) .                          
C. \(\frac{{{a^2}}}{2}\) .            
D. \(\frac{{{a^2}}}{{\sqrt 2 }}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

ccccccc (ảnh 1)

Ta có \(\left( {\overrightarrow {DC} ,\overrightarrow {AS} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right) = \widehat {SAB} = 45^\circ \) (vì \(\Delta ASB\) vuông cân tại S).

\(\Delta ASB\) vuông cân tại S, \(AB = a\) nên \(SA = \frac{a}{{\sqrt 2 }}\).

\(\overrightarrow {DC} .\overrightarrow {AS} = \left| {\overrightarrow {DC} } \right|.\left| {\overrightarrow {AS} } \right|.\cos \left( {\overrightarrow {DC} ,\overrightarrow {AS} } \right) = a.\frac{a}{{\sqrt 2 }}.\cos 45^\circ = \frac{{{a^2}}}{2}\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (triệu VNĐ) là số tiền cần giảm cho mỗi chiếc xe\[\left( {0 \le x \le 4} \right).\]

Số lượng xe bán ra được trong một năm sau khi giảm giá là: \[x.200 + 600\](chiếc)

Số lợi nhuận thu được từ việc bán xe trong một năm sau khi giảm giá là: \[\left( {x.200 + 600} \right)\left( {4 - x} \right)\]

Xét hàm số \[f\left( x \right) = \left( {x.200 + 600} \right)\left( {4 - x} \right) = 200\left( { - {x^2} + x + 12} \right)\,\,\,\left( {0 \le x \le 4} \right)\].

\(f'\left( x \right) = 200\left( { - 2x + 1} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow - 2x + 1 = 0 \Leftrightarrow x = \frac{1}{2}\).

\(f\left( 0 \right) = 2400;f\left( {\frac{1}{2}} \right) = 2450;f\left( 4 \right) = 0\).

Lời giải

bbbbb (ảnh 2)

a) \(\overrightarrow {SA} ,\overrightarrow {SB} ,\overrightarrow {SC} ,\overrightarrow {SD} \) là 4 vectơ không đồng phẳng.

Vì 5 điểm S, A, B, C, D không cùng thuộc 1 mặt phẳng.

b) \(\left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {SB} } \right| = \left| {\overrightarrow {SC} } \right| = \left| {\overrightarrow {SD} } \right|\) .

c) Độ lớn trọng lực tác động lên đèn chùm là: \(P = mg = 5.10 = 50\;N\).

d) Ta có \(S.ABCD\) là hình chóp tứ giác đều. Suy ra \(SA = SB = SC = SD\)\(\widehat {ASC} = 60^\circ \).

Vậy tam giác \[SAC\] đều. Gọi \[O\] là trung điểm \(AC\).

Hợp lực của 4 sợi xích là: \(\vec F = \overrightarrow {SA} + \overrightarrow {SC} + \overrightarrow {SB} + \overrightarrow {SD} = 2\overrightarrow {SO} + 2\overrightarrow {SO} = 4\overrightarrow {SO} \)

Để đèn chùm đứng yên thì hợp lực của các sợi xích phải cân bằng với trọng lực hay \(4\overrightarrow {SO} = \vec P\) hay \(4SO = P \Leftrightarrow SO = 12,5\).

Xét tam giác đều \(SAC\)\(SA = \frac{2}{{\sqrt 3 }}SO = \frac{{25\sqrt 3 }}{3}\).

Vậy độ lớn của lực căng cho mỗi sợi xích là \(\frac{{25\sqrt 3 }}{3}\;N\).

Đáp án: a) Sai;    b) Đúng;    c) Đúng;     d) Sai.

Câu 5

A. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MA} + \overrightarrow {MD} } \right)\).                                          
B. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} + \overrightarrow {MB} } \right)\).
C. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} + \overrightarrow {MD} } \right)\).                                          
D. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} - \overrightarrow {MD} } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP