Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\)có \(AB = 1;AD = 2;AA' = 3\). Gọi M là một điểm trên đoạn \(CC'\)sao cho \(CM = 2MC'\).

a) \(\overrightarrow {AA'} = \frac{3}{2}\overrightarrow {CM} \).
b) \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \frac{2}{3}\).
c) \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AD} + \frac{1}{3}\overrightarrow {AA'} \).
d) \(\overrightarrow {AM} .\overrightarrow {B'D} = 0\).
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\)có \(AB = 1;AD = 2;AA' = 3\). Gọi M là một điểm trên đoạn \(CC'\)sao cho \(CM = 2MC'\).

a) \(\overrightarrow {AA'} = \frac{3}{2}\overrightarrow {CM} \).
b) \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \frac{2}{3}\).
c) \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AD} + \frac{1}{3}\overrightarrow {AA'} \).
d) \(\overrightarrow {AM} .\overrightarrow {B'D} = 0\).
Quảng cáo
Trả lời:

a) Ta có \(\overrightarrow {AA'} \) cùng phương với \(\overrightarrow {CM} \) và \(AA' = \frac{3}{2}CM\). Suy ra \(\overrightarrow {AA'} = \frac{3}{2}\overrightarrow {CM} \).
b) Do \(\overrightarrow {AC} \) cùng phương với \(\overrightarrow {A'C'} \), suy ra \(\left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AM} ,\overrightarrow {AC} } \right) = \widehat {CAM}\).
Suy ra \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \cos \widehat {CAM} = \frac{{AC}}{{AM}} = \frac{{\sqrt {A{B^2} + A{D^2}} }}{{\sqrt {A{C^2} + C{M^2}} }} = \frac{{\sqrt {{1^2} + {2^2}} }}{{\sqrt {5 + 4} }} = \frac{{\sqrt 5 }}{3}\).
c) Ta có \(\overrightarrow {AM} = \overrightarrow {AC} + \overrightarrow {CM} = \overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {AA'} \).
d) Ta có \(\overrightarrow {B'D} = \overrightarrow {AD} - \overrightarrow {AB'} = \overrightarrow {AD} - \left( {\overrightarrow {AB} + \overrightarrow {AA'} } \right) = - \overrightarrow {AB} + \overrightarrow {AD} - \overrightarrow {AA'} \).
Do đó \(\overrightarrow {AM} .\overrightarrow {B'D} = \left( {\overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {AA'} } \right).\left( { - \overrightarrow {AB} + \overrightarrow {AD} - \overrightarrow {AA'} } \right)\)\( = - A{B^2} + A{D^2} - \frac{2}{3}A{A'^2} = - 1 + 4 - 6 = - 3\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x (triệu VNĐ) là số tiền cần giảm cho mỗi chiếc xe\[\left( {0 \le x \le 4} \right).\]
Số lượng xe bán ra được trong một năm sau khi giảm giá là: \[x.200 + 600\](chiếc)
Số lợi nhuận thu được từ việc bán xe trong một năm sau khi giảm giá là: \[\left( {x.200 + 600} \right)\left( {4 - x} \right)\]
Xét hàm số \[f\left( x \right) = \left( {x.200 + 600} \right)\left( {4 - x} \right) = 200\left( { - {x^2} + x + 12} \right)\,\,\,\left( {0 \le x \le 4} \right)\].
Có \(f'\left( x \right) = 200\left( { - 2x + 1} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow - 2x + 1 = 0 \Leftrightarrow x = \frac{1}{2}\).
Có \(f\left( 0 \right) = 2400;f\left( {\frac{1}{2}} \right) = 2450;f\left( 4 \right) = 0\).
Lời giải
a) Hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.
b) Hai vectơ \(\overrightarrow {BD} \) và \(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).
c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).
Áp dụng định lí côsin cho tam giác SCD có:
\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).
d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \) và \(\overrightarrow {SD} \) bằng 90°.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.