Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\)có \(AB = 1;AD = 2;AA' = 3\). Gọi M là một điểm trên đoạn \(CC'\)sao cho \(CM = 2MC'\).

a) \(\overrightarrow {AA'} = \frac{3}{2}\overrightarrow {CM} \).
b) \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \frac{2}{3}\).
c) \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AD} + \frac{1}{3}\overrightarrow {AA'} \).
d) \(\overrightarrow {AM} .\overrightarrow {B'D} = 0\).
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\)có \(AB = 1;AD = 2;AA' = 3\). Gọi M là một điểm trên đoạn \(CC'\)sao cho \(CM = 2MC'\).

a) \(\overrightarrow {AA'} = \frac{3}{2}\overrightarrow {CM} \).
b) \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \frac{2}{3}\).
c) \(\overrightarrow {AM} = \overrightarrow {AB} + \overrightarrow {AD} + \frac{1}{3}\overrightarrow {AA'} \).
d) \(\overrightarrow {AM} .\overrightarrow {B'D} = 0\).
Quảng cáo
Trả lời:

a) Ta có \(\overrightarrow {AA'} \) cùng phương với \(\overrightarrow {CM} \) và \(AA' = \frac{3}{2}CM\). Suy ra \(\overrightarrow {AA'} = \frac{3}{2}\overrightarrow {CM} \).
b) Do \(\overrightarrow {AC} \) cùng phương với \(\overrightarrow {A'C'} \), suy ra \(\left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AM} ,\overrightarrow {AC} } \right) = \widehat {CAM}\).
Suy ra \(\cos \left( {\overrightarrow {AM} ,\overrightarrow {A'C'} } \right) = \cos \widehat {CAM} = \frac{{AC}}{{AM}} = \frac{{\sqrt {A{B^2} + A{D^2}} }}{{\sqrt {A{C^2} + C{M^2}} }} = \frac{{\sqrt {{1^2} + {2^2}} }}{{\sqrt {5 + 4} }} = \frac{{\sqrt 5 }}{3}\).
c) Ta có \(\overrightarrow {AM} = \overrightarrow {AC} + \overrightarrow {CM} = \overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {AA'} \).
d) Ta có \(\overrightarrow {B'D} = \overrightarrow {AD} - \overrightarrow {AB'} = \overrightarrow {AD} - \left( {\overrightarrow {AB} + \overrightarrow {AA'} } \right) = - \overrightarrow {AB} + \overrightarrow {AD} - \overrightarrow {AA'} \).
Do đó \(\overrightarrow {AM} .\overrightarrow {B'D} = \left( {\overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {AA'} } \right).\left( { - \overrightarrow {AB} + \overrightarrow {AD} - \overrightarrow {AA'} } \right)\)\( = - A{B^2} + A{D^2} - \frac{2}{3}A{A'^2} = - 1 + 4 - 6 = - 3\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ giả thiết ta có \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} .\overrightarrow {BD} = 0\).
I là trung điểm của AB nên \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \).
J là trung điểm của CD nên \(\overrightarrow {CJ} + \overrightarrow {DJ} = \overrightarrow 0 \).
Lại có \(\overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AC} + \overrightarrow {CJ} ;\overrightarrow {IJ} = \overrightarrow {IB} + \overrightarrow {BD} + \overrightarrow {DJ} \).
Suy ra \(2\overrightarrow {IJ} = \overrightarrow {AC} + \overrightarrow {BD} \Rightarrow \overrightarrow {IJ} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right)\).
Do đó \(\overrightarrow {IJ} .\overrightarrow {AB} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right).\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {BD} .\overrightarrow {AB} = 0\).
Suy ra \(\overrightarrow {IJ} \bot \overrightarrow {AB} \) hay \(IJ \bot AB\).
Lời giải
Gọi x (triệu VNĐ) là số tiền cần giảm cho mỗi chiếc xe\[\left( {0 \le x \le 4} \right).\]
Số lượng xe bán ra được trong một năm sau khi giảm giá là: \[x.200 + 600\](chiếc)
Số lợi nhuận thu được từ việc bán xe trong một năm sau khi giảm giá là: \[\left( {x.200 + 600} \right)\left( {4 - x} \right)\]
Xét hàm số \[f\left( x \right) = \left( {x.200 + 600} \right)\left( {4 - x} \right) = 200\left( { - {x^2} + x + 12} \right)\,\,\,\left( {0 \le x \le 4} \right)\].
Có \(f'\left( x \right) = 200\left( { - 2x + 1} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow - 2x + 1 = 0 \Leftrightarrow x = \frac{1}{2}\).
Có \(f\left( 0 \right) = 2400;f\left( {\frac{1}{2}} \right) = 2450;f\left( 4 \right) = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.