Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\overrightarrow {{F_2}} = \overrightarrow {MB} ,\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một ô tô tại điểm M và ô tô đứng yên. Cho biết cường độ hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều bằng 25N và \(\widehat {AMB} = 60^\circ \). Tính cường độ lực \(\overrightarrow {{F_3}} \)(kết quả làm tròn đến hàng phần mười).
Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\overrightarrow {{F_2}} = \overrightarrow {MB} ,\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một ô tô tại điểm M và ô tô đứng yên. Cho biết cường độ hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều bằng 25N và \(\widehat {AMB} = 60^\circ \). Tính cường độ lực \(\overrightarrow {{F_3}} \)(kết quả làm tròn đến hàng phần mười).

Quảng cáo
Trả lời:

Ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {MD} \) (với D là điểm sao cho AMBD là hình bình hành).
Ta có \(MA = \left| {\overrightarrow {MA} } \right| = \left| {\overrightarrow {{F_1}} } \right| = 25\) N; \(MB = \left| {\overrightarrow {MB} } \right| = \left| {\overrightarrow {{F_2}} } \right| = 25\) N.
Do \(\widehat {AMB} = 60^\circ \) nên DMAB là tam giác đều. Khi đó \(MD = 2.\frac{{25\sqrt 3 }}{2} = 25\sqrt 3 \).
Do ô tô đứng yên nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \).
Suy ra \(\overrightarrow {{F_3}} = - \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)\)\( \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \left| { - \left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right)} \right| = \left| {\overrightarrow {DM} } \right| = MD = 25\sqrt 3 \) N.
Vậy cường độ của \(\overrightarrow {{F_3}} \) là \(25\sqrt 3 \approx 43,3\) N.
Trả lời: 43,3.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ giả thiết ta có \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} .\overrightarrow {BD} = 0\).
I là trung điểm của AB nên \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \).
J là trung điểm của CD nên \(\overrightarrow {CJ} + \overrightarrow {DJ} = \overrightarrow 0 \).
Lại có \(\overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AC} + \overrightarrow {CJ} ;\overrightarrow {IJ} = \overrightarrow {IB} + \overrightarrow {BD} + \overrightarrow {DJ} \).
Suy ra \(2\overrightarrow {IJ} = \overrightarrow {AC} + \overrightarrow {BD} \Rightarrow \overrightarrow {IJ} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right)\).
Do đó \(\overrightarrow {IJ} .\overrightarrow {AB} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {BD} } \right).\overrightarrow {AB} = \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {BD} .\overrightarrow {AB} = 0\).
Suy ra \(\overrightarrow {IJ} \bot \overrightarrow {AB} \) hay \(IJ \bot AB\).
Lời giải
Gọi x (triệu VNĐ) là số tiền cần giảm cho mỗi chiếc xe\[\left( {0 \le x \le 4} \right).\]
Số lượng xe bán ra được trong một năm sau khi giảm giá là: \[x.200 + 600\](chiếc)
Số lợi nhuận thu được từ việc bán xe trong một năm sau khi giảm giá là: \[\left( {x.200 + 600} \right)\left( {4 - x} \right)\]
Xét hàm số \[f\left( x \right) = \left( {x.200 + 600} \right)\left( {4 - x} \right) = 200\left( { - {x^2} + x + 12} \right)\,\,\,\left( {0 \le x \le 4} \right)\].
Có \(f'\left( x \right) = 200\left( { - 2x + 1} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow - 2x + 1 = 0 \Leftrightarrow x = \frac{1}{2}\).
Có \(f\left( 0 \right) = 2400;f\left( {\frac{1}{2}} \right) = 2450;f\left( 4 \right) = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.