Câu hỏi:

10/09/2025 41 Lưu

Tìm các khoảng đơn điệu và cực trị của các hàm số sau

a) \(y = {x^2} + 4\ln \left( {3 - x} \right)\);                                                                                b) \(y = \sqrt {{x^2} - 2x} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Tập xác định của hàm số là \(D = \left( { - \infty ;3} \right)\).

\(y' = 2x - \frac{4}{{3 - x}} = \frac{{ - 2{x^2} + 6x - 4}}{{3 - x}}\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\).

Bảng biến thiên

Tìm các khoảng đơn điệu và cực trị của các hàm số sau (ảnh 1)

Dựa vào bảng biến thiên ta có:

+) Hàm số đồng biến trên khoảng (1; 2) và nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\)\(\left( {2;3} \right)\).

+) Hàm số đạt cực tiểu tại \(x = 1\)\({y_{CT}} = 1 + 4\ln 2\).

+) Hàm số đạt cực đại tại \(x = 2\) và .

b) Tập xác định của hàm số là \(D = \left( { - \infty ;0} \right] \cup \left[ {2; + \infty } \right)\).

Ta có \(y' = \frac{{x - 1}}{{\sqrt {{x^2} - 2x} }},\forall x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\).

\(y' = 0 \Leftrightarrow x - 1 = 0 \Leftrightarrow x = 1 \notin D\).

Bảng biến thiên

Tìm các khoảng đơn điệu và cực trị của các hàm số sau (ảnh 2)

Dựa vào bảng biến thiên ta có:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {2; + \infty } \right)\).

Hàm số không có cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

vvvvvvv (ảnh 1)

a) Hai vectơ \(\overrightarrow {AD} \)\(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.

b) Hai vectơ \(\overrightarrow {BD} \)\(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).

c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).

Áp dụng định lí côsin cho tam giác SCD có:

\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).

d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \)\(\overrightarrow {SD} \) bằng 90°.

Đáp án: a) Sai;   b) Sai;   c) Đúng;    d) Sai.

Lời giải

Gọi x (triệu VNĐ) là số tiền cần giảm cho mỗi chiếc xe\[\left( {0 \le x \le 4} \right).\]

Số lượng xe bán ra được trong một năm sau khi giảm giá là: \[x.200 + 600\](chiếc)

Số lợi nhuận thu được từ việc bán xe trong một năm sau khi giảm giá là: \[\left( {x.200 + 600} \right)\left( {4 - x} \right)\]

Xét hàm số \[f\left( x \right) = \left( {x.200 + 600} \right)\left( {4 - x} \right) = 200\left( { - {x^2} + x + 12} \right)\,\,\,\left( {0 \le x \le 4} \right)\].

\(f'\left( x \right) = 200\left( { - 2x + 1} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow - 2x + 1 = 0 \Leftrightarrow x = \frac{1}{2}\).

\(f\left( 0 \right) = 2400;f\left( {\frac{1}{2}} \right) = 2450;f\left( 4 \right) = 0\).

Câu 4

A. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MA} + \overrightarrow {MD} } \right)\).                                          
B. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} + \overrightarrow {MB} } \right)\).
C. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} + \overrightarrow {MD} } \right)\).                                          
D. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} - \overrightarrow {MD} } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP