Câu hỏi:

10/09/2025 37 Lưu

Xác định tiệm cận đứng và tiệm cận ngang của đồ thị các hàm số sau

a) \(y = \frac{{2x - 1}}{{x + 1}}\);                                        b) \(y = \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{2x - 1}}{{x + 1}} = 2\) nên đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x - 1}}{{x + 1}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x - 1}}{{x + 1}} = + \infty \) nên \(x = - 1\) là tiệm cận đứng của đồ thị hàm số.

b) \(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} = 1\). Suy ra \(y = 1\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{\left( {x - 1} \right)\left( {x - 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{x - 4}}{{x + 1}} = + \infty \);

\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{\left( {x - 1} \right)\left( {x - 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{x - 4}}{{x + 1}} = - \infty \);

\(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 5x + 4}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x - 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x - 4}}{{x + 1}} = - \frac{3}{2}\).

Suy ra \(x = - 1\) là tiệm cận đứng của đồ thị hàm số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

vvvvvvv (ảnh 1)

a) Hai vectơ \(\overrightarrow {AD} \)\(\overrightarrow {CB} \) là hai vectơ ngược hướng nên góc giữa chúng bằng 180°.

b) Hai vectơ \(\overrightarrow {BD} \)\(\overrightarrow {BO} \) là hai vectơ cùng hướng nên góc giữa chúng là \(0^\circ \).

c) Ta có \(\left( {\overrightarrow {BA} ,\overrightarrow {CS} } \right) = \left( {\overrightarrow {CD} ,\overrightarrow {CS} } \right) = \widehat {SCD}\).

Áp dụng định lí côsin cho tam giác SCD có:

\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4}\).

d) Ta có \(\overrightarrow {AO} .\overrightarrow {SD} = - \overrightarrow {OA} .\left( {\overrightarrow {OD} - \overrightarrow {OS} } \right) = - \overrightarrow {OA} .\overrightarrow {OD} + \overrightarrow {OA} .\overrightarrow {OS} = 0\) nên góc giữa hai vectơ \(\overrightarrow {AO} \)\(\overrightarrow {SD} \) bằng 90°.

Đáp án: a) Sai;   b) Sai;   c) Đúng;    d) Sai.

Lời giải

Gọi x (triệu VNĐ) là số tiền cần giảm cho mỗi chiếc xe\[\left( {0 \le x \le 4} \right).\]

Số lượng xe bán ra được trong một năm sau khi giảm giá là: \[x.200 + 600\](chiếc)

Số lợi nhuận thu được từ việc bán xe trong một năm sau khi giảm giá là: \[\left( {x.200 + 600} \right)\left( {4 - x} \right)\]

Xét hàm số \[f\left( x \right) = \left( {x.200 + 600} \right)\left( {4 - x} \right) = 200\left( { - {x^2} + x + 12} \right)\,\,\,\left( {0 \le x \le 4} \right)\].

\(f'\left( x \right) = 200\left( { - 2x + 1} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow - 2x + 1 = 0 \Leftrightarrow x = \frac{1}{2}\).

\(f\left( 0 \right) = 2400;f\left( {\frac{1}{2}} \right) = 2450;f\left( 4 \right) = 0\).

Câu 4

A. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MA} + \overrightarrow {MD} } \right)\).                                          
B. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} + \overrightarrow {MB} } \right)\).
C. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} + \overrightarrow {MD} } \right)\).                                          
D. \(\overrightarrow {MG} = \frac{1}{4}\left( {\overrightarrow {MC} - \overrightarrow {MD} } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP