Cho hàm số \(y = \sqrt {8 + 2x - {x^2}} \). Xét tính đúng sai của các mệnh đề sau.
a) Tập xác định của hàm số là \(D = \left[ { - 2;4} \right]\).
b) Hàm số có \(y' = \frac{{1 - x}}{{\sqrt {8 + 2x - {x^2}} }}\).
c) Hàm số nghịch biến trên khoảng \(\left( {1;4} \right)\).
d) Giá trị cực đại của hàm số là 0.
Cho hàm số \(y = \sqrt {8 + 2x - {x^2}} \). Xét tính đúng sai của các mệnh đề sau.
a) Tập xác định của hàm số là \(D = \left[ { - 2;4} \right]\).
b) Hàm số có \(y' = \frac{{1 - x}}{{\sqrt {8 + 2x - {x^2}} }}\).
c) Hàm số nghịch biến trên khoảng \(\left( {1;4} \right)\).
d) Giá trị cực đại của hàm số là 0.
Quảng cáo
Trả lời:

Xét hàm số \(y = \sqrt {8 + 2x - {x^2}} \) có:
a) Điều kiện: \(8 + 2x - {x^2} \ge 0 \Leftrightarrow - 2 \le x \le 4\).
Tập xác định của hàm số là \(D = \left[ { - 2;4} \right]\)
b) Ta có \(y' = \frac{{{{\left( {8 + 2x - {x^2}} \right)}^\prime }}}{{2\sqrt {8 + 2x - {x^2}} }} = \frac{{2 - 2x}}{{2\sqrt {8 + 2x - {x^2}} }} = \frac{{1 - x}}{{\sqrt {8 + 2x - {x^2}} }}\)
Có \(y' = 0 \Leftrightarrow x = 1\)
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta thấy
c) Hàm số nghịch biến trên khoảng \(\left( {1;4} \right)\).
d) Giá trị cực đại của hàm số là 3.
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ bảng xét dấu ta có \(y' < 0\) khi \(x \in \left( { - 2;0} \right) \cup \left( {0;2} \right)\).
Suy ra hàm số nghịch biến trên các khoảng (−2; 0) và \(\left( {0;2} \right)\).
Có \(y' > 0\) khi \(x \in \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\).
Suy ra hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {2; + \infty } \right)\).
Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.
Lời giải
a) Điều kiện: \( - x - 1 \ne 0 \Leftrightarrow x \ne - 1\). Tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
b) Ta có \(f'\left( x \right) = \frac{{\left( {2x - 2} \right)\left( { - x - 1} \right) + \left( {{x^2} - 2x + 6} \right)}}{{{{\left( { - x - 1} \right)}^2}}} = \frac{{ - {x^2} - 2x + 8}}{{{{\left( {x + 1} \right)}^2}}}\).
c) Ta có \(f'\left( x \right) = 0 \Leftrightarrow - {x^2} - 2x + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 4\end{array} \right.\).
Bảng biến thiên
Hàm số có giá trị cực đại bằng \( - 2\).
d) Hàm số \(y = f\left( {{x^2} - 2} \right)\) xác định khi \({x^2} - 2 \ne - 1 \Leftrightarrow x \ne \pm 1\).
Tập xác định \({D_1} = \mathbb{R}\backslash \left\{ { - 1;1} \right\}\).
Ta có \(y' = 2xf'\left( {{x^2} - 2} \right)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}2x = 0\\f'\left( {{x^2} - 2} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 2 = 2\\{x^2} - 2 = - 4\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x = - 2\end{array} \right.\).
Bảng biến thiên
Vậy hàm số \(y = f\left( {{x^2} - 2} \right)\) có 3 điểm cực trị.
Đáp án: a) Sai; b) Sai; c) Sai; d) Đúng.
Câu 3
A. \[x = - 2.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.