Cho hàm số \(f\left( x \right) = \cos 2x + 3\sin x + 3\). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(f\left( x \right)\) trên \(\left[ {\frac{\pi }{6};\frac{{2\pi }}{3}} \right]\). Tính giá trị biểu thức \(8M + m\).
Quảng cáo
Trả lời:

Ta có \(f\left( x \right) = \cos 2x + 3\sin x + 3 = 1 - 2{\sin ^2}x + 3\sin x + 3 = - 2{\sin ^2}x + 3\sin x + 4\).
Đặt \(t = \sin x\). Khi đó \(x \in \left[ {\frac{\pi }{6};\frac{{2\pi }}{3}} \right] \Rightarrow t \in \left[ {\frac{1}{2};1} \right]\).
Do đó GTNN và GTLN của hàm số đã cho bằng GTNN, GTLN của hàm số \(f\left( t \right) = - 2{t^2} + 3t + 4\) trên đoạn \(\left[ {\frac{1}{2};1} \right]\).
Ta có BBT trên đoạn \(\left[ {\frac{1}{2};1} \right]\)của hàm số \(f\left( t \right) = - 2{t^2} + 3t + 4\).

Suy ra \(M = \frac{{41}}{8},m = 5\), do đó \(8M + m = 8 \cdot \frac{{41}}{8} + 5 = 46\).
Đáp án: 46.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\sin 4a = 2\sin 2a \cdot \cos 2a\) (công thức nhân đôi). Chọn B.
Lời giải
Ta có \(\tan x = - 1 \Leftrightarrow x = \frac{{ - \pi }}{4} + k\pi ,k \in \mathbb{Z}.\)Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.