Câu hỏi:

11/09/2025 20 Lưu

Cho hàm số \(y = \sin \left( {2x - \frac{\pi }{2}} \right)\).

(a) Tập xác định của hàm số đã cho là \(\left[ { - 1;1} \right]\).

(b) Hàm số đã cho là hàm số lẻ.

(c) Hàm số đã cho là hàm tuần hoàn với chu kì \(T = \pi \).

(d) Giá trị lớn nhất của hàm số đã cho trên \(\left[ {\frac{{ - \pi }}{8};\frac{\pi }{3}} \right]\) bằng \(1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Tập xác định của hàm số đã cho là \(\mathbb{R}\).

b) Sai. Ta có \(y = \sin \left( {2x - \frac{\pi }{2}} \right) = - \sin \left( {\frac{\pi }{2} - 2x} \right) = - \cos 2x\).

Do đó \(y\left( { - x} \right) = - \cos \left( { - 2x} \right) = - \cos 2x = y\left( x \right)\). Vậy hàm số đã cho là hàm số chẵn.

c) Đúng. Ta có \(y = - \cos 2x\) nên hàm số đã cho tuần hoàn với chu kì \(T = \frac{{2\pi }}{2} = \pi \).

d) Sai. Đặt \(t = 2x\). Hàm số đã cho trở thành \(f\left( t \right) = - \cos t\).

Vì \(x \in \left[ {\frac{{ - \pi }}{8};\frac{\pi }{3}} \right] \Rightarrow t \in \left[ {\frac{{ - \pi }}{4};\frac{{2\pi }}{3}} \right]\).

Ta có bảng biến thiên của hàm số \(f\left( t \right) = - \cos t\):

Cho hàm số \(y = \sin \left( {2x - \frac{\pi }{2}} \right)\).
(a) Tập xác định của hàm số đã cho là \(\left[ { - 1;1} \right]\).
(b) Hàm số đã cho là hàm số lẻ.
(c) Hàm số đã cho là hàm tuần  (ảnh 1)

Từ bảng biến thiên ta có hàm số đạt giá trị lớn nhất bằng \(\frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[A = \cos \left( {\alpha + 26\pi } \right) - 2\sin \left( {\alpha - 7\pi } \right) - \cos \left( {1,5\pi } \right) - \cos \left( {\alpha + 2003\frac{\pi }{2}} \right) + \cos \left( {\alpha - 1,5\pi } \right) \cdot \cot \left( {\alpha - 8\pi } \right)\]

\[ = \cos \alpha - 2\sin \left( {\alpha - \pi } \right) - \cos \left( {\frac{\pi }{2}} \right) - \cos \left( {\alpha - \frac{\pi }{2}} \right) + \cos \left( {\alpha + \frac{\pi }{2}} \right) \cdot \cot \alpha \]\[ = \cos \alpha + 2\sin \alpha - 0 - \sin \alpha - \sin \alpha \cdot \cot \alpha = \cos \alpha + \sin \alpha - \cos \alpha = \sin \alpha \].

Mà \(A = a\sin \alpha + b\cos \alpha \) nên \(a = 1,\,\,b = 0\). Từ đó ta có \(3a + b = 3\).

Đáp án: 3.

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \[O\]. Gọi \(M\), \(N\) lần lượt là trung điểm của các cạnh \(SA\) và \(SC\).
(a)Chứng minh \[MN{\rm{//}}\left( {ABCD} \right).\ (ảnh 1)

a)Ta có \[MN\] là đường trung bình tam giác \[SAC\].

Suy ra \[MN\,{\rm{//}}\,AC\].

Do đó: \[\left\{ \begin{array}{l}MN{\rm{//}}AC\\MN \not\subset \left( {ABCD} \right);AC \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow MN{\rm{//}}\left( {ABCD} \right).\]

b)Gọi \[I\] là giao điểm của \[MN\] và \[SO\].

\(Q\) là giao điểm của \[PI\] và \[SD\].

Ta có \[Q \in PI,PI \subset \left( {MNP} \right) \Rightarrow Q \in \left( {MNP} \right).\]

Mà \[Q \in SD\]. Suy ra \(Q\) là giao điểm của \(SD\) và mặt phẳng \(\left( {MNP} \right)\).

Chứng minh được \[I\]là trung điểm \[SO\] nên \[PI\] là đường trung bình tam giác \[SBO\].

Suy ra \[PI{\rm{//}}SB\] hay \[PQ{\rm{//}}SB\].

Xét tam giác SBD có \[PQ{\rm{//}}SB\] nên \(\frac{{SQ}}{{SD}} = \frac{{BP}}{{BD}} = \frac{1}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP